刷题首页
题库
高中数学
题干
为了适应高考改革,某中学推行“创新课堂”教学.高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取20名学生的成绩进行统计分析,结果如表:(记成绩不低于120分者为“成绩优秀”)
分数
[80,90)
[90,100)
[100,110)
[110,120)
[120,130)
[130,140)
[140,150]
甲班频数
1
1
4
5
4
3
2
乙班频数
0
1
1
2
6
6
4
(Ⅰ)由以上统计数据填写下面的2×2列联表,并判断是否有95%以上的把握认为“成绩优秀与教学方式有关”?
甲班
乙班
总计
成绩优秀
成绩不优秀
总计
(Ⅱ)在上述样本中,学校从成绩为[140,150]的学生中随机抽取2人进行学习交流,求这2人来自同一个班级的概率.
参考公式:
K
2
=
,其中
n
=
a
+
b
+
c
+
d
.
临界值表:
P
(
K
2
≥
k
0
)
0.100
0.050
0.010
0.001
k
0
2.706
3.841
6.635
10.828
上一题
下一题
0.99难度 解答题 更新时间:2019-01-18 05:18:01
答案(点此获取答案解析)
同类题1
2018年双11当天,某购物平台的销售业绩高达2135亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.9,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为140次.
(1)请完成下表,并判断是否可以在犯错误概率不超过0.5%的前提下,认为商品好评与服务好评有关?
对服务好评
对服务不满意
合计
对商品好评
140
对商品不满意
10
合计
200
(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为X.
①求随机变量X的分布列;
②求X的数学期望和方差.
附:
,其中n=a+b+c+d.
P(K
2
≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
同类题2
电视传媒公司为了解某地区观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成下面的22列联表,并据此资料你是否认为“体育迷”与性别有关?
非体育迷
体育迷
合计
男
女
10
55
合计
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为
X
.若每次抽取的结果是相互独立的,求
X
的分布列,期望
E
(
X
)和方差
D
(
X
).
附:
.
P
(
K
2
≥
k
)
0.05
0.01
k
3.841
6.635
同类题3
某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式,为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式,根据工人完成生产任务的工作时间(单位:
min
)绘制了如图所示的茎叶图:
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表,再根据列联表,能否有99.9%的把握认为两种生产方式的效率有差异?
超过
不超过
第一种生产方式
第二种生产方式
附:
,
0.050
0.010
0.001
3.841
6.635
10.828
同类题4
2018年俄罗斯世界杯激战正酣,某校工会对全校教职工在世界杯期间每天收看比赛的时间作了一次调查,得到如下频数分布表:
收看时间
(单位:小时)
14
28
20
12
(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“球迷”,否则定义为“非球迷”,请根据频数分布表补全
列联表:
男
女
合计
球迷
40
非球迷
合计
并判断能否有90%的把握认为该校教职工是否为“球迷”与“性别”有关;
(2)在全校“球迷”中按性别分层抽样抽取6名,再从这6名“球迷”中选取2名世界杯知识讲座.记其中女职工的人数为
,求的
分布列与数学期望.
附表及公式:
0.15
0.10
0.05
0.025
2.072
2.706
3.841
5.024
.
同类题5
某学校高三年级有学生1000名,经调查研究,其中750名同学经常参加体育锻炼(称为
类同学),另外250名同学不经常参加体育锻炼(称为
类同学),现用分层抽样方法(按
类、
类分二层)从该年级的学生中共抽查100名同学.
(1)测得该年级所抽查的100名同学身高(单位:厘米) 频率分布直方图如图,按照统计学原理,根据频率分布直方图计算这100名学生身高数据的平均数和中位数(单位精确到0.01);
(2)如果以身高达到
作为达标的标准,对抽取的100名学生,得到列联表:
体育锻炼与身高达标
列联表
身高达标
身高不达标
合计
积极参加体育锻炼
60
不积极参加体育锻炼
10
合计
100
①完成上表;
②请问有多大的把握认为体育锻炼与身高达标有关系?
参考公式:
.
参考数据:
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
相关知识点
计数原理与概率统计
统计案例
独立性检验
列联表
完善列联表