刷题首页
题库
高中数学
题干
随着网络和智能手机的普及,许多可以解答各科问题的搜题软件走红. 有教育工作者认为:网搜答案可以起到拓展思路的作用,但是对多数学生来讲,容易产生依赖心理,对学习能力造成损害.为了了解网络搜题在学生中的使用情况,某校对学生在一周时间内进行网络搜题的频数进行了问卷调查,并从参与调查的学生中抽取了男、女学生各
人进行抽样分析,得到如下样本频数分布表:
一周时间内进行网络搜题的频数区间
男生频数
女生频数
将学生在一周时间内进行网络搜题的频数超过
次的行为视为“经常使用网络搜题”,不超过
次的视为“偶尔或不用网络搜题”.
(1)根据已有数据,完成下列
列联表(单位:人)中数据的填写,并判断是否有
的把握认为使用网络搜题与性别有关?
经常使用网络搜题
偶尔或不用网络搜题
合计
男生
女生
合计
(2)现从所抽取的女生中利用分层抽样的方法再抽取
人,再从这
人中随机选出
人参加座谈,求选出的
人中恰有
人经常使用网络搜题的概率.
参考公式:
,其中
.
参考数据:
上一题
下一题
0.99难度 解答题 更新时间:2019-06-08 12:39:30
答案(点此获取答案解析)
同类题1
某电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了
名观众进行调查,如图是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图,将日均收看该体育节目时间不低于
分钟的观众称为体育迷.
(1)以频率为概率,若从这
名观众中随机抽取
名进行调查,求这
名观众中体育迷人数
的分布列;
(2)若抽取
人中有女性
人,其中女体育迷有
人,完成答题卡中的列联表并判断能否在犯错概率不超过
的前提下认为是体育迷与性别有关系吗?
附表及公式:
,
.
同类题2
“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路 ”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:
男性
女性
合计
反感
10
不反感
8
合计
30
已知在这30人中随机抽取1人抽到反感“中国式过马路 ”的路人的概率是
.
(1)请将上面的列表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路 ”与性别是否有关?(
(2)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.
同类题3
为了调查某高中学生每天的睡眠时间,现随机对20名男生和20名女生进行问卷调查,结果如下:女生:
睡眠时间(小时)
4,5)
5,6)
6,7)
7,8)
8,9
人数
2
4
8
4
2
男生:
睡眠时间(小时)
4,5)
5,6)
6,7)
7,8)
8,9
人数
1
5
6
5
3
(1)现把睡眠时间不足5小时的定义为“严重睡眠不足”,从睡眠时间不足6小时的女生中随机抽取3人,求此3人中恰有一人为“严重睡眠不足”的概率;
(2)完成下面2x2列联表,并回答是否有90%的把握认为“睡眠时间与性别有关”?
睡眠时间少于7小时
睡眠时间不少于7小时
合计
男生
女生
合计
P(
)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.8879
10.828
(
,其中n=a+b+c+d)
同类题4
为了调查生活规律与患胃病是否与有关,某同学在当地随机调查了200名30岁以上的人,并根据调查结果制成了不完整的列联表如下:
不患胃病
患胃病
总计
生活有规律
60
40
生活无规律
60
100
总计
100
(1)补全列联表中的数据;
(2)用独性检验的基本原理,说明生活无规律与患胃病有关时,出错的概率不会超过多少?
参考公式和数表如下:
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
同类题5
某学校为调查高三年级学生的身高情况,按随机抽样的方法抽取100名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在
的男生人数有16人.
(1)试问在抽取的学生中,男,女生各有多少人?
(2)根据频率分布直方图,完成下列的
列联表,并判断能有多大(百分之几)的把握认为“身高与性别有关”?
总计
男生身高
女生身高
总计
(3)在上述100名学生中,从身高在
之间的男生和身高在
之间的女生中间按男、女性别分层抽样的方法,抽出6人,从这6人中选派2人当旗手,求2人中恰好有一名女生的概率.
参考公式:
参考数据:
0.025
0.010
0.005
0.001
5.024
6.635
7.879
10.828
相关知识点
计数原理与概率统计
统计案例
独立性检验
列联表
完善列联表