刷题首页
题库
高中数学
题干
现有5种不同的颜色要对图形中(如图)的四个部分涂色,要求有公共边的两部分不能用同一颜色,则不同的涂色方法有____种.
上一题
下一题
0.99难度 填空题 更新时间:2018-10-10 02:56:56
答案(点此获取答案解析)
同类题1
如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不同,且两端的格子的颜色也不同,则不同的涂色方法共有__________种(用数字作答).
同类题2
如图,图案共分9个区域,有6中不同颜色的涂料可供涂色,每个区域只能涂一种颜色的涂料,其中2和9同色、3和6同色、4和7同色、5和8同色,且相邻区域的颜色不相同,则涂色方法有()
A.360种
B.720种
C.780种
D.840种
同类题3
用红、黄、蓝、绿四种颜色给图中的
、
、
、
四个小方格涂色(允许只用其中几种),使邻区(有公共边的小格)不同色,则不同的涂色方式种数为( )
A.24
B.36
C.72
D.84
同类题4
如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有( )种
A.120
B.260
C.340
D.420
同类题5
用红、黄、蓝三种颜色之一去涂图中标号为
的
个小正方形(如下图),
使得任意相邻(有公共边的)小正方形所涂颜色都不相同,且标号为“
、
、
”的小正
方形涂相同的颜色,则符合条件的所有涂法共有
种.
相关知识点
计数原理与概率统计
计数原理
加法原理与乘法原理
两个计数原理的综合应用
涂色问题