刷题首页
题库
高中数学
题干
设椭圆
的左焦点为
,左顶点为
,上顶点为
B
.已知
(
为原点).
(Ⅰ)求椭圆的离心率;
(Ⅱ)设经过点
且斜率为
的直线
与椭圆在
轴上方的交点为
,圆
同时与
轴和直线
相切,圆心
在直线
上,且
,求椭圆的方程.
上一题
下一题
0.99难度 解答题 更新时间:2019-06-09 03:39:01
答案(点此获取答案解析)
同类题1
椭圆的中心在原点,焦点在坐标轴上,焦距为2
.一双曲线和该椭圆有公共焦点,且双曲线的实半轴长比椭圆的长半轴长小4,双曲线离心率与椭圆离心率之比为7∶3,求椭圆和双曲线的方程.
同类题2
已知椭圆的中心在原点,离心率
,且它的一个焦点与抛物线
的焦点重合,则此椭圆方程为()
A.
B.
C.
D.
同类题3
已知焦点在
x
轴上的双曲线
C
的两条渐近线过坐标原点,且两条渐近线与以点
为圆心,1为半径的圆相切,又知
C
的一个焦点与
P
关于直线
对称.
(1)求双曲线
C
的方程;
(2)设直线
与双曲线
C
的左支交于
A
、
B
两点,另一直线
经过
及
AB
的中点,求直线
在
y
轴上的截距
b
的取值范围;
(3)若
Q
是双曲线
C
上的任一点,
、
为双曲线
C
的左、右两个焦点,从
引
的角平分线的垂线,垂足为
N
,试求点
N
的轨迹方程.
同类题4
已知曲线
,过点
作直线
和曲线
交于
、
两点.
(1)求曲线
的焦点到它的渐近线之间的距离;
(2)若
,点
在第一象限,
轴,垂足为
,连结
,求直线
倾斜角的取值范围;
(3)过点
作另一条直线
,
和曲线
交于
、
两点,问是否存在实数
,使得
和
同时成立?如果存在,求出满足条件的实数
的取值集合,如果不存在,请说明理由.
同类题5
已知点
是抛物线
上的两点,点
是线段
的中点,则
的值为
A.
B.
C.
D.
相关知识点
平面解析几何
圆锥曲线