用n边形的对角线把n边形分割成(n-2)个三角形,共有多少种不同的分割方案(n≥4).
(探究)为了解决上面的数学问题,我们采取一般问题特殊化的策略,先从最简单情形入手,再逐次递进转化,最后猜想得出结论.不妨假设n边形的分割方案有P
n种.
探究一:用四边形的对角线把四边形分割成2个三角形,共有多少种不同的分割方案?
如图①,图②,显然,只有2种不同的分割方案.所以,P
4=2.
探究二:用五边形的对角线把五边形分割成3个三角形,共有多少种不同的分割方案?
不妨把分割方案分成三类:
第1类:如图③,用A,E与B连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有P
4种不同的分割方案,所以,此类共有P
4种不同的分割方案.
第2类:如图④,用A,E与C连接,把五边形分割成3个三角形,有1种不同的分割方案,可视为

种分割方案.
第3类:图⑤,用A,E与D连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有P
4种不同的分割方案,所以,此类共有P
4种不同的分割方案.
所以,P
5 =

+

+

=

(种)



探究三:用六边形的对角线把六边形分割成4个三角形,共有多少种不同的分割方案?
不妨把分割方案分成四类:
第1类:如图⑥,用A,F与B连接,先把六边形分割转化成1个三角形和1个五边形,再把五边形分割成3个三角形,由探究二知,有P
5种不同的分割方案.所以,此类共有P
5种不同的分割方案.
第2类:如图⑦,用A,F与C连接,先把六边形分割转化成2个三角形和1个四边形.再把四边形分割成2个三角形,由探究一知,有P
4种不同的分割方案.所以,此类共有P
4种分割方案
第3类:如图⑧,用A,F与D连接,先把六边形分割转化成2个三角形和1个四边形.再把四边形分割成2个三角形,由探究一知,有P
4种不同的分割方案.所以,此类共有P
4种分割方案.
第4类:如图⑨,用A,F与E连接,先把六边形分割转化成1个三角形和1个五边形.再把五边形分割成3个三角形,由探究二知,有P
5种不同的分割方案.所以,此类共有P
5种分割方案.
所以,P
6 =

(种)
探究四:用七边形的对角线把七边形分割成5个三角形,则P
7与P
6的关系为:
P
7 =

,共有_____种不同的分割方案.……
(结论)用n边形的对角线把n边形分割成(n-2)个三角形,共有多少种不同的分割方案(n≥4).(直接写出P
n与P
n -1的关系式,不写解答过程).
(应用)用八边形的对角线把八边形分割成6个三角形,共有多少种不同的分割方案? (应用上述结论,写出解答过程)