刷题首页
题库
高中数学
题干
.如图,已知
是椭圆
的左、右焦点,
是椭圆
上任意一点,过
作
的外角的角平分线的垂线,垂足为
,则点
的轨迹为
A.直线
B.圆
C.椭圆
D.抛物线
上一题
下一题
0.99难度 单选题 更新时间:2019-12-15 01:09:08
答案(点此获取答案解析)
同类题1
在平面直角坐标系
中,点
,动点
满足
(1)求点
的轨迹
的方程;
(2)若直线
与轨迹
相交于
两点,直线
与轨迹
相交于
两点,顺次连接
得到的四边形
是菱形,求
.
同类题2
已知椭圆
的离心率为
,以原点为圆心,椭圆短半轴长为半径的圆与直线
相切,
分别是椭圆的左右两个顶点,
为椭圆
上的动点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)
为过
且垂直于
轴的直线上的点,若
,求点
的轨迹方程,并说明轨迹是什么曲线.
同类题3
已知圆
和定点
,其中点
是该圆的圆心,
是圆
上任意一点,线段
的垂直平分线交
于点
,设动点
的轨迹为
.
(1)求动点
的轨迹方程
;
(2)设曲线
与
轴交于
两点,点
是曲线
上异于
的任意一点,记直线
,
的斜率分别为
,
.证明:
是定值;
(3)设点
是曲线
上另一个异于
的点,且直线
与
的斜率满足
,试探究:直线
是否经过定点?如果是,求出该定点,如果不是,请说明理由.
同类题4
已知圆
:
,点
,
,点
在圆
上运动,
的垂直平分线交
于点
.
(Ⅰ)求动点
的轨迹
的方程;
(Ⅱ)设
分别是曲线
上的两个不同点,且点
在第一象限,点
在第三象限,若
,
为坐标原点,求直线
的斜率
;
(Ⅲ)过点
,
且斜率为
的动直线
交曲线
于
两点,在
轴上是否存在定点
,使以
为直径的圆恒过这个点?若存在,求出
的坐标,若不存在,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
轨迹问题——椭圆