刷题首页
题库
初中数学
题干
定义:有一组邻边相等的凸四边形叫做“准菱形”,利用该定义完成以下各题:
(1)理解:如图1,在四边形ABCD中,若__________(填一种情况),则四边形ABCD是“准菱形”;
(2)应用:证明:对角线相等且互相平分的“准菱形”是正方形;(请画出图形,写出已知,求证并证明)
(3)拓展:如图2,在Rt△
ABC
中,∠ABC=90°,AB=2,BC=1,将Rt△ABC沿∠ABC的平分线BP方向平移得到△DEF,连接AD,BF,若平移后的四边形ABFD是“准菱形”,求线段BE的长.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-23 08:37:46
答案(点此获取答案解析)
同类题1
模型结论:如图①,正
内接于
,点
是劣弧
上一点,可推出结论
.
应用迁移:如图②,在
中,
,
,
,
是
内一点,则点
到
三个顶点的距离和的最小值为( )
A.
B.5
C.
D.
同类题2
已知∠ABC=30°,点D在射线BC上,且到A点的距离等于线段a的长.
(1)用圆规和直尺在图中作出点D:(不写作法,但须保留作图痕迹,且说明结果
(2)如果AB=8,a=5.求△ABD的面积.
同类题3
如图,在Rt△ABC中,∠ABC=90°, AB=BC=
.将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,BN,求BM的长.(提示: 连接BN,先证:AC⊥BM.再利用含30°的直角三角形的性质解答)
同类题4
甲、乙两位探险者在沙漠进行探险,某日早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙两人相距_____千米.
同类题5
已知:△ABC中,AB=15,AC=13,BC边上的高AD=12,BC=_______.
相关知识点
图形的性质
三角形
勾股定理
勾股定理及应用
勾股定理
用勾股定理解三角形