刷题首页
题库
初中数学
题干
如图,有一张直角三角形纸片,两直角边
,
,将
折叠,使
点与点
重合,折痕为
,则
等于( )cm.
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2018-11-17 05:50:58
答案(点此获取答案解析)
同类题1
如图,将矩形纸片ABCD折叠,使边AD落在对角线BD上,折痕为DE,且A点落在对角线F处.若AD=3,CD=4,则AE的长为( )
A.
B.1
C.2
D.
同类题2
如图,在RtΔ
ABC
中,∠
C
=90º,
BC
=6cm,
AC
=8cm,如果按图中所示方法将Δ
BCD
沿
BD
折叠,使点
C
落在边
AB
上的点
C
'处,那么Δ
ADC
'的周长是________cm.
同类题3
如图,在长方形
ABCD
中,
AB
=6,
BC
=8.
(1)求对角线
AC
的长;
(2)点
E
是线段
CD
上的一点,把△
ADE
沿着直线
AE
折叠.点
D
恰好落在线段
AC
上,与点
F
重合,求线段
DE
的长.
同类题4
如图,长方形
ABCD
中,
AB
=8,
BC
=6,
P
为
AD
上一点,将△
ABP
沿
BP
翻折至△
EBP
,
PE
与
CD
相交于点
O
,且
OE
=
OD
,求
AP
的长.
同类题5
如图1,一张矩形纸片
ABCD
,其中
AD
=8cm,
AB
=6cm,先沿对角线
BD
对折,点
C
落在点
C
′的位置,
BC′
交
AD
于点
G
.
(1)求证:
AG
=
C′G
;
(2)如图2,再折叠一次,使点
D
与点
A
重合,得折痕
EN
,
EN
交
AD
于点
M
,求
EM
的长.
相关知识点
图形的性质
三角形
勾股定理
勾股定理及应用
勾股定理
勾股定理与折叠问题