刷题首页
题库
初中数学
题干
(1)如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点.且BE+DF=E
A.试求∠EAF度数.
小王同学探究此问题的方法是,延长FD到点
B.使DG=B
C.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得求出∠EAF度数,他求出的∠EAF度数应是
.请你根据他的思路完成论证过程.
(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,试探究当∠EAF与∠BAD满足什么关系时有BE+DF=EF,并说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-10-29 11:47:56
答案(点此获取答案解析)
同类题1
如图所示,
是等腰直角三角形,其中
,
是
边上的一点,连接
,过
作
交
于
,
,且
,连接
并延长,交
于
点.若四边形
的面积为
,则
的面积为__________.
同类题2
已知:如图1,OM是∠AOB的平分线,点C在OM上,OC=5,且点C到OA的距离为3.过点C作CD⊥OA,CE⊥OB,垂足分别为D、E,易得到结论:OD+OE=_________;
(1)把图1中的∠DCE绕点C旋转,当CD与OA不垂直时(如图2),上述结论是否成立?并说明理由;
(2)把图1中的∠DCE绕点C旋转,当CD与OA的反向延长线相交于点D时:
①请在图3中画出图形;
②上述结论还成立吗?若成立,请给出证明;若不成立,请直接写出线段OD、OE之间的数量关系,不需证明.
同类题3
(1)如图(1),已知△ABC,以AB、AC为边向△ABC外作等边三角形ABD和等边三角形ACE,连接BE、C
A.请你完成图形,并证明:BE=CD;
(2)如图(2),已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE、CD,BE和CD有什么数量关系?说明理由;
(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图(3),要测量河两岸相对的两点B、E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=1千米,AC=A
B.求BE的长.
同类题4
如图所示,△ADB≌△EDB,△BDE≌△CDE,B,E,C在一条直线上.下列结论:①BD是∠ABE的平分线;②AB⊥AC;③∠C=30°;④线段DE是△BDC的中线;⑤AD+BD=AC.其中正确的有()个.
A.2
B.3 C.4
C.5
同类题5
如图已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、
A.若BD=4,CE=6,试求DE的长.
相关知识点
图形的性质
三角形
全等三角形
三角形全等的判定