刷题首页
题库
初中数学
题干
如图,在
Rt
△
ABC
中,∠
C
=90°,点
P
为
AC
边上的一点,将线段
AP
绕点
A
顺时针方向旋转(点
P
对应点
P
′),当
AP
旋转至
AP
′⊥
AB
时,点
B
、
P
、
P
′恰好在同一直线上,此时作
P
′
E
⊥
AC
于点
E
.
(1)求证:∠
CBP
=∠
ABP
;
(2)求证:
AE
=
CP
;
上一题
下一题
0.99难度 解答题 更新时间:2019-11-16 08:54:14
答案(点此获取答案解析)
同类题1
已知点C是线段AB上一点,在线段AB的同侧作△CAD和△CBE,直线BD和AE相交于点F,CA=CD,CB=CE,∠ACD=∠BCE。
(1)如图①,若∠ACD=60
0
,则∠AFB=___________;若∠ACD=
,则∠AFB=___________。
(2)如图②,将图①中的△CAD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),试探究∠AFB与
的数量关系,并说明理由。
同类题2
如图,在四边形
中,
、
是对角线,已知
是等边三角形,
,
,
,求边
的长.
同类题3
如图,已知在
中,
于点
,
为
上一点,且
,
,若
,
,则
______.
同类题4
阅读理解题
(1)阅读理解:如图①,等边
内有一点
,若点
到顶点
,
,
的距离分别为3,4,5,求
的大小.
思路点拨:考虑到
,
,
不在一个三角形中,采用转化与化归的数学思想,可以将
绕顶点
逆时针旋转
到
处,此时
,这样,就可以利用全等三角形知识,结合已知条件,将三条线段的长度转化到一个三角形中,从而求出
的度数.请你写出完整的解题过程.
(2)变式拓展:请你利用第(1)题的解答思想方法,解答下面问题:
已知如图②,
中,
,
,
、
为
上的点且
,
,
,求
的大小.
(3)能力提升:如图③,在
中,
,
,
,点
为
内一点,连接
,
,
,且
,请直接写出
的值,即
______.
同类题5
如图,
中,
,
,
,在
上截取
,使
,过点
作
的垂线,交
于点
,连接
,交
于点
,交
于点
,
,则
____________
.
相关知识点
图形的性质
三角形
全等三角形
三角形全等的判定
全等三角形的辅助线问题
全等三角形——旋转模型