刷题首页
题库
初中数学
题干
如图,在正方形
中,点E在边
上,将点E绕点D逆时针旋转得到点F,若点F恰好落在边
的延长线上,连接
,
,
.
(1)判断
的形状,并说明理由;
(2)若
,则
的面积为________.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-18 05:19:47
答案(点此获取答案解析)
同类题1
如图1,在
中,
分别为
上一点,且
,
,
.
(1)求证:
;
(2)求证:
;
(3)若
,将
绕
顺时针旋转至如图2所示位置(
不动),连
,取
中点
,连
,
为射线
上一点,连
,求
的最小值.
同类题2
在等边
中,点
在
边上,点
在
的延长线上且
.
(1)如图1,若点
为
中点,求
的度数;
(2)如图2,若点
为
上任意一点,求证
.
(3)如图3,若点
为
上任意一点,点
关于直线
的对称点为点
,连接
,请判断
的形状,并说明理由.
同类题3
将矩形ABCD绕点B顺时针旋转得到矩形A
1
BC
1
D
1
,点A、C、D的对应点分别为A
1
、C
1
、D
1
,当点A
1
落在AC上时.
(1)如图,若∠CAB=60°,求证:四边形ABD
1
C为平行四边形;
(2)如图,AD
1
交CB于点O.若∠CAB≠60°,求证:DO=AO.
同类题4
如图,
AN
∥
CB
,
B
、
N
在
AC
同侧,
BM
、
CN
交于点
D
,
AC
=
BC
,且∠
A
+∠
MDN
=180°.
(1)如图1,当∠
NAC
=90°,求证:
BM
=
CN
;
(2)如图2,当∠
NAC
为锐角时,试判断
BM
与
CN
关系并证明;
(3)如图3,在(1)的条件下,且∠
MBC
=30°,一动点
E
在线段
BM
上运动过程中,连
CE
,将线段
CE
绕点
C
顺时针旋转90°至
CF
,取
BE
中点
P
,连
AP
、
FP
.设四边形
APFC
面积为
S
,若
AM
=
﹣1,
MC
=1,在
E
点运动过程中,请写出
S
的取值范围
.
同类题5
己知
是等边三角形,
于点
,点
是直线
上的动点,将
绕点
顺时针方向旋转
得到
,连接
、
、
;
(1)如图1,当点
在线段
上时,猜想
和
的数量关系;(直接写出结果)
(2)如图2,当点
在线段
的延长线上时,(1)中的结论还成立吗?若成立,请证明你的结论,若不成立,请写出你的结论,并证明你的结论;
(3)点
在直线
上运动,当
是等腰直角三角形时,请直接写出
的度数.
图1
图2
备用图
相关知识点
图形的性质
三角形
全等三角形
三角形全等的判定
全等三角形的辅助线问题
全等三角形——旋转模型