刷题首页
题库
高中数学
题干
已知
,数列
的前
项和为
,且
.
(1)求证:数列
是等比数列,并求出通项公式;
(2)对于任意
(其中
,
,
、
均为正整数),若
和
的所有乘积
的和记为
,试求
的值;
(3)设
,
,若数列
的前
项和为
,是否存在这样的实数
,使得对于所有的
都有
成立,若存在,求出
的取值范围;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-17 07:13:19
答案(点此获取答案解析)
同类题1
下列命题正确的是( )
A.若数列
、
的极限都存在,且
,则数列
的极限存在
B.若数列
、
的极限都不存在,则数列
的极限也不存在
C.若数列
、
的极限都存在,则数列
、
的极限也存在
D.数
,若数列
的极限存在,则数列
的极限也存在
同类题2
已知一列非零向量
满足:
,
,其中
是正数
(1)求数列
的通项公式;
(2)求证:当
时,向量
与
的夹角为定值;
(3)当
时,把
中所有与
共线的向量按原来的顺序排成一列,记为
,令
,
为坐标原点,求点列
的极限点
的坐标.(注:若点坐标为
,且
,则称点
为点列的极限点)
同类题3
_______
同类题4
计算:
__________________.
同类题5
已知数列
满足:
,
,
,则
__.
相关知识点
数列
前n项和与通项关系