刷题首页
题库
高中数学
题干
为了美化环境,某公园欲将一块空地规划建成休闲草坪,休闲草坪的形状为如图所示的四边形ABC
A.其中AB=3百米,AD=
百米,且△BCD是以D为直角顶点的等腰直角三角形.拟修建两条小路AC,BD(路的宽度忽略不计),设∠BAD=
,
(
,
).
(1)当cos
=
时,求小路AC的长度;
(2)当草坪ABCD的面积最大时,求此时小路BD的长度.
上一题
下一题
0.99难度 解答题 更新时间:2019-02-20 05:12:32
答案(点此获取答案解析)
同类题1
一个摩天轮的半径为10米,轮子的底部在地面上2米处,如果此摩天轮每20秒转一圈,且当摩天轮上某人经过点
(点
与摩天轮中心
同高度)时开始计时(按逆时针方向转).
(1)求此人相对于地面的高度关于时间的函数关系式;
(2)在摩天轮转动一圈内,有多长时间此人相对于地面高度不超过7米?
同类题2
根据指令
(
,
),机器人在平面上能完成下列动作,先原地旋转弧度
(
为正时,按逆时针方向旋转
,
为负时,按顺时针方向旋转
),再朝其面对的方向沿直线行走距离
r
;
(1)现机器人在平面直角坐标系的坐标原点,且面对
x
轴正方向,试给机器人下一个指令,使其移动到点
;
(2)机器人在完成该指令后,发现在点
处有一小球,正向坐标原点作匀速直线滚动,已知小球滚动的速度为机器人直线行走速度的2倍,若忽略机器人原地旋转所需的时间,问机器人最快可在何处截住小球?并给出机器人截住小球所需的指令?(结果用反三角函数表示)
同类题3
如图,某公园内有两条道路
,
,现计划在
上选择一点
,新建道路
,并把
所在的区域改造成绿化区域.已知
,
.
(1)若绿化区域
的面积为1
,求道路
的长度;
(2)若绿化区域
改造成本为10万元/
,新建道路
成本为10万元/
.设
(
),当
为何值时,该计划所需总费用最小?
同类题4
如图,某住宅小区的平面图呈圆心角
为的扇形
,小区的两个出入口设置在点
及点
处,且小区里有一条平行于
的小路
.
(1)已知某人从
沿
走到
用了
分钟,从
沿
走到
用了
分钟,若此人步行的速度为每分钟
米,求该扇形的半径
的长(精确到
米)
(2)若该扇形的半径为
,已知某老人散步,从
沿
走到
,再从
沿
走到
,试确定
的位置,使老人散步路线最长.
同类题5
某公园为了美化环境和方便顾客,计划建造一座圆弧形拱桥,已知该桥的剖面如图所示,共包括圆弧形桥面
和两条长度相等的直线型路面
、
,桥面跨度
的长不超过
米,拱桥
所在圆的半径为
米,圆心
在水面
上,且
和
所在直线与圆
分别在连结点
和
处相切.设
,已知直线型桥面每米修建费用是
元,弧形桥面每米修建费用是
元.
(1)若桥面(线段
、
和弧
)的修建总费用为
元,求
关于
的函数关系式;
(2)当
为何值时,桥面修建总费用
最低?
相关知识点
三角函数与解三角形
三角函数
三角函数的应用
三角函数在生活中的应用
正弦定理解三角形
三角形面积公式及其应用