刷题首页
题库
高中数学
题干
某公司拟购买一块地皮建休闲公园,如图,从公园入口
沿
,
方向修建两条小路,休息亭
与入口的距离为
米(其中
为正常数),过
修建一条笔直的鹅卵石健身步行带,步行带交两条小路于
、
处,已知
,
.
(1)设
米,
米,求
关于
的函数关系式及定义域;
(2)试确定
,
的位置,使三条路围成的三角形
地皮购价最低.
上一题
下一题
0.99难度 解答题 更新时间:2019-04-25 10:45:01
答案(点此获取答案解析)
同类题1
如图,正方形
的边长为2,
为
的中点,射线
从
出发,绕着点
顺时针方向旋转至
,在旋转的过程中,记
为
,
所经过的在正方
形
内的区域(阴影部分)的面积
,那么对于函数
有以下三个结论:
①
;② 对任意
,都有
;
③ 对任意
,且
,都有
;
其中所有正确结论的序号是
_______
;
同类题2
如图,
是半径为
,
的扇形,
是弧
上的点,
是扇形的内棱矩形,经
,若
,且当
时,四边形
的面积
取得最大,则
的值为( ).
A.
B.
C.
D.
同类题3
将一块圆心角为120
°
,半径为20cm的扇形钢片裁出一块矩形钢片,如图有两种裁法:使矩形一边在扇形的一条半径
OA
上,或者让矩形一边与弦
AB
平行,试问哪种裁法能使截得的矩形钢片面积最大?并求出这个最大值.
同类题4
如图有一景区的平面图是一半圆形,其中直径长为
两点在半圆弧上满足
,设
,现要在景区内铺设一条观光通道,由
和
组成.
(1)用
表示观光通道的长
,并求观光通道
的最大值;
(2)现要在景区内绿化,其中在
中种植鲜花,在
中种植果树,在扇形
内种植草坪,已知单位面积内种植鲜花和种植果树的利润均是种植草坪利润的
倍,则当
为何值时总利润最大?
同类题5
某地有三家工厂,分别位于矩形
ABCD
的顶点
A
,
B
,及
CD
的中点
P
处,已知
km,
,为了处理三家工厂的污水,现要在矩形
ABCD
的区域上(含边界),且
A
,
B
与等距离的一点
O
处建造一个污水处理厂,并铺设排污管道
AO
,
BO
,
OP
,设排污管道的总长为
y
km。
(I)按下列要求写出函数关系式:
①设
,将
表示成
的函数关系式;
②设
,将
表示成
的函数关系式。
(Ⅱ)请你选用(I)中的一个函数关系式,确定污水处理厂的位置,使三条排水管道总长度最短。
相关知识点
三角函数与解三角形
三角函数
三角函数的应用
几何中的三角函数模型
三角函数在生活中的应用