刷题首页
题库
初中数学
题干
(1)把一堆黑色棋子按如图1所示的规律排列起来,摆成第n个“口”需要a枚黑色的棋子,请用含n的代数式表示:a=
图1;
(2)把一堆黑色和白色棋子按如图2所示的规律排列起来:
求:从前往后数,第2018颗棋子的颜色。
(3)把一堆黑色和白色棋子被按如图3所示的规律排列起来:
若图3中的黑色棋子全部由图1中的a枚黑色棋子充当,用完为止(黑色棋子共有a枚),按照这样的规律摆放至以黑色棋子收尾。当a=100,请列式并计算:这时,图3中黑白棋子的总数是多少?
上一题
下一题
0.99难度 解答题 更新时间:2020-01-19 11:39:34
答案(点此获取答案解析)
同类题1
圆上有五个点,这五个点将圆分成五等份(每一份称为一段弧长),把这五个点按顺时针方向依次编号为1,2,3,4,5,若从某一点开始,沿圆周顺时针方向行走,点的编号是数字几,就走几段弧长,则称这种走法为一次“移位”.如:小明在编号为3的点,那么他应走3段弧长,即从3→ 4→5→1为第一次“移位”,这时他到达编号为1的点,然后从1→2为第二次“移位”.若小明从编号为4的点开始,第2020次“移位”后,他到达编号为______的点.
同类题2
将正方形 ABCD (如图 1)作如下划分:
第1次划分:分别连接正方形ABCD对边的中点(如图2),得线段HF和EG,它们交于点M,此时图2中共有5个正方形;
第2次划分:将图2 左上角正方形AEMH再作划分,得图3,则图3 中共有9个正方形;
(1)若每次都把左上角的正方形依次划分下去,则第100次划分后,图中共有
个正方形;
(2)继续划分下去,第几次划分后能有805个正方形?写出计算过程.
(3)按这种方法能否将正方形ABCD划分成有2015个正方形的图形?如果能,请算出是第几次划分,如果不能,需说明理由.
(4)如果设原正方形的边长为1,通过不断地分割该面积为1的正方形,并把数量关系和几何图形巧妙地结合起来,可以很容易得到一些计算结果,试着探究求出下面表达式的结果吧.
计算
.(直接写出答案即可)
同类题3
(规律探索)如图所示的是由相同的小正方形组成的图形,每个图形的小正方形个数为
,
是正整数.观察下列图形与等式之间的关系.
第一组:
……
第二组:
……
……
(规律归纳)
;(用含有n的代数式表示)
(规律应用)
计算
的结果为
.
同类题4
如图,圆圈内分别标有0,1,2,3,4,…,11号这12个数,电子跳蚤每跳一次,可以从一个圆圈跳到相邻的圆圈.现在,一只电子跳蚤从标有数“0”的圆圈开始,按顺时针方向跳了2019次后,落在一个圆圈中,该圆圈所标的数是( )
A.0
B.1
C.2
D.3
同类题5
如图,给正五边形的顶点依次编号为1,2,3,4,5,若从某一个顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”,如:小明在编号为2的顶点上时,那么他应走2个边长,即从2→3→4为第一次“移位”,这时他到达编号为4的顶点,接下来他应走4个边长后从4→5→1→2→3为第二次“移位”若小明从编号为1的顶点开始,第2020次“移位”后,则他所处顶点的编号为
A.1
B.2
C.3
D.4
相关知识点
数与式
代数式
整式