刷题首页
题库
高中数学
题干
设
是函数
的一个极值点。
(1)求
与
的关系式(用
表示
),并求
的单调区间;
(2)设
,若存在
,使得
成立,求实数
的取值范围。
上一题
下一题
0.99难度 解答题 更新时间:2014-12-02 06:14:11
答案(点此获取答案解析)
同类题1
已知
为自然对数的底数,设函数
存在极大值点
,且对于
的任意可能取值,恒有极大值
,则下列结论中正确的是( )
A.存在
,使得
B.存在
,使得
C.
的最大值为
D.
的最大值为
同类题2
已知函数
.
(1)当
时,求函数
的单调区间;
(2)若函数
在
上为减函数,求实数
的取值范围.
同类题3
已知函数
,其中
为自然对数的底数).
(1)讨论函数
的单调性,并写出相应的单调区间;
(2)设
,若函数
对任意
都成立,求
的最大值.
同类题4
已知函数
,
(I)当
2时,求曲线
在点
处的切线方程;
(II)设函数
,讨论
的单调性
同类题5
已知函数
,其中
,
为自然对数的底数.
(Ⅰ)当
是
的极值点时,求
的值并求此时
的单调区间;
(Ⅱ)若
,证明:
时,
.
相关知识点
函数与导数
导数及其应用
导数在研究函数中的作用
利用导数研究函数的单调性