刷题首页
题库
高中数学
题干
已知
是实数,函数
.
(Ⅰ)若
,求
的值及曲线
在点
处的切线方程;
(Ⅱ)求
在区间
上的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2014-08-07 05:17:06
答案(点此获取答案解析)
同类题1
已知函数
,
.
(1)若
在
上为单调递增,求实数
的取值范围;
(2)若
,且
,求证:对定义域内的任意实数
,不等式
恒成立.
同类题2
若函数
在区间
单调递增,则实数
的取值范围是( )
A.
B.
C.
D.
同类题3
设函数f(x)=ax﹣2﹣lnx(a∈R).
(Ⅰ)若f(x)在点(e,f(e))处的切线为x﹣ey+b=0,求a,b的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)若g(x)=ax﹣e
x
,求证:在x>0时,f(x)>g(x).
同类题4
若
a
>0,
b
>0,且函数
f
(
x
)=4
x
3
-
ax
2
-2
bx
+2在
x
=1处有极值,则
ab
的最大值为________.
同类题5
(本小题满分14分)已知函数
,对任意的
,满足
,其中
为常数.
(1)若
的图像在
处切线过点
,求
的值;
(2)已知
,求证:
;
(3)当
存在三个不同的零点时,求
的取值范围.
相关知识点
函数与导数
导数及其应用
导数在研究函数中的作用