刷题首页
题库
高中数学
题干
设函数
在
及
时取得极值.
(1)求
的值;
(2)求函数
在
的最大值与最小值的差.
上一题
下一题
0.99难度 解答题 更新时间:2019-01-20 01:37:34
答案(点此获取答案解析)
同类题1
已知函数
是定义在
上的奇函数,当
时,
,给出下列命题:① 当
时,
;② 函数
的单调递减区间是
;③ 对
,都有
.其中正确的命题是
A.①②
B.②③
C.①③
D.②
同类题2
已知函数
.
(1)求曲线
在
处的切线方程;
(2)证明:
在
上有唯一的极值点
,且
.
同类题3
设函数
.
(Ⅰ)求
的单调区间;
(Ⅱ)求
在区间
上的最大值和最小值.
同类题4
设
,
.
(Ⅰ)当
时,求曲线
在
处的切线的方程;
(Ⅱ)如果存在
,使得
成立,求满足上述条件的最大整数
;
(Ⅲ)如果对任意的
,都有
成立,求实数
的取值范围.
同类题5
已知函数
,曲线
在点
处的切线方程为
.
(1)求
的值;
(2)求
在
上的最大值.
相关知识点
函数与导数
导数及其应用
导数在研究函数中的作用
利用导数研究函数的最值
由导数求函数的最值