刷题宝
  • 刷题首页
题库 高中数学

题干

(本小题满分14分)设函数f(x)=(x–1)2+alnx,a∈R.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与直线x+2y–1=0垂直,求a的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若函数f(x)有两个极值点x1,x2且x1<x2,求证:f(x2)>–ln2.
上一题 下一题 0.99难度 解答题 更新时间:2015-05-04 04:51:08

答案(点此获取答案解析)

同类题1

已知函数为偶函数,若曲线的一条切线与直线垂直,则切点的横坐标为(  )
A.B.C.D.

同类题2

已知函数在处的切线与直线垂直,则(  )
A.2B.0C.1D.-1

同类题3

已知函数在点处的切线与直线平行.
(1)求的值;
(2)若函数在区间上不单调,求实数的取值范围;
(3)求证:对任意时,恒成立.

同类题4

已知函数.
(1)若曲线存在斜率为-1的切线,求实数a的取值范围;
(2)求的单调区间;
(3)设函数,求证:当时, 在上存在极小值.

同类题5

已知函数,,(常数且).
(Ⅰ)当与的图象相切时,求的值;
(Ⅱ)设,若存在极值,求的取值范围.
相关知识点
  • 函数与导数
  • 导数及其应用
  • 导数的概念和几何意义
  • 导数的几何意义
  • 已知切线(斜率)求参数
  • 利用导数研究函数的单调性
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)