数形结合是重要的数学思想方法之一,数形结合具体地说就是将抽象数学语言与直观图形结合起来,使抽象思维与形象思维结合起来,通过“数”与“形”之间的对应和转变来解决数学问题。数轴是数形结合的最基础图形,是连接数与形的桥梁之一,请解决下面的问题:
(1)如图1,点B表示的数是1,则点A表示的数是
.

(2)如果点M表示数-2,将点M向右移动6个单位长度到达终点N,那么终点N表示的数是4,此时M、N两点间的距离是
.
(3)若∣x-0∣意义表示数x到原点的距离,则∣x-3∣的意义表示数x到3的距离;类似的式子∣x+3∣=4,则x=
.
(4)由(3)可知,一般地,如果点A表示数为a,点B表示的数b,则A、B两点间的距离表示为
.
(5)如图2,数轴上的两个点A、B所表示的数分别是a,b,点O为原点。在a+b,a-b,∣a∣-∣b∣这三个运算结果中,是正数的有
个.

(6)利用数轴直接写出∣x-2∣+∣x+5∣的最小值=
.