刷题首页
题库
高中数学
题干
为了美化校园环境,学校打算在兰蕙广场上建造一个矩形花园,中间有三个完全一样的矩形花坛,每个花坛的面积均为294平方米,花坛四周的过道宽度均为2米,如图所示,设矩形花坛的长为
米,宽为
米,整个矩形花园的面积为
平方米.
(1)试用
、
表示
;
(2)为了节约用地,当矩形花坛的长为多少米时,新建矩形花园占地最少,占地最少为多少平方米?
上一题
下一题
0.99难度 解答题 更新时间:2020-02-07 05:01:53
答案(点此获取答案解析)
同类题1
如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱,污水从
孔流入,经沉淀后从
孔流出,设箱体的长度为
米,高度为
米,已知流出的水中该杂质的质量分数与
的乘积
成反比,现有制箱材料60平方米;
(1)写出
关于
的表达式;
(2)当
各为多少米时,经沉淀后流出的水中该杂质质量分数最小;(
孔的面积忽略不计)
同类题2
窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一.图中的窗花是由一张圆形纸片剪去一个正十字形剩下的部分,正十字形的顶点都在圆周上.已知正十字形的宽和长都分别为
x
,
y
(单位:
dm
)且
x
<
y
,若剪去的正十字形部分面积为4
dm
2
.
(1)求
y
关于
x
的函数解析式,并求其定义域;
(2)现为了节约纸张,需要所用圆形纸片面积最小.当
x
取何值时,所用到的圆形纸片面积最小,并求出其最小值.
同类题3
水葫芦原产于巴西,
年作为观赏植物引入中国. 现在南方一些水域水葫芦已泛滥成灾严重影响航道安全和水生动物生长. 某科研团队在某水域放入一定量水葫芦进行研究,发现其蔓延速度越来越快,经过
个月其覆盖面积为
,经过
个月其覆盖面积为
. 现水葫芦覆盖面积
(单位
)与经过时间
个月的关系有两个函数模型
与
可供选择.
(参考数据:
)
(Ⅰ)试判断哪个函数模型更合适,并求出该模型的解析式;
(Ⅱ)求原先投放的水葫芦的面积并求约经过几个月该水域中水葫芦面积是当初投放的
倍.
同类题4
生产某种产品
q
个单位时成本函数为
C
(
q
)=200+0.05
q
2
,求:
(1)生产90个单位该产品时的平均成本;
(2)生产90个到100个单位该产品时,成本的平均变化率;
(3)生产第100个单位该产品时,成本的变化率.
同类题5
某市公园内的人工湖上有一个以点
为圆心的圆形喷泉,沿湖有一条小径
,在
的另一侧建有控制台
,
和
之间均有小径连接(小径均为直路),且
,喷泉中心
点距离
点60米,且
连线恰与
平行,在小径
上有一拍照点
,现测得
米,
米,且
.
(I)请计算小径
的长度;
(Ⅱ)现打算改建控制台
的位置,其离喷泉尽可能近,在点
的位置及
大小均不变的前提下,请计算
距离的最小值;
(Ⅲ)一人从小径一端
处向
处匀速前进时,喷泉恰好同时开启,喷泉开启
分钟后的水幕是一个以
为圆心,半径
米的圆形区域(含边界),此人的行进速度是
米/分钟,在这个人行进的过程中他会被水幕沾染,试求实数
的最小值.
相关知识点
函数与导数
函数的应用
函数模型及其应用
函数模型的应用实例
建立拟合函数模型解决实际问题