刷题首页
题库
高中数学
题干
若函数
同时满足:①对于定义域上的任意
,恒有
②对于定义域上的任意
,当
时,恒有
,则称函数
为“理想函数”。给出下列四个函数中:⑴
⑵
⑶
, ⑷
,能被称为“理想函数”的有
_ _
(填相应的序号)。
上一题
下一题
0.99难度 填空题 更新时间:2010-11-07 10:24:25
答案(点此获取答案解析)
同类题1
有一个工厂生产某种产品的固定成本(固定投入)为
元,已知每生产
件这样的产品需要再增加成本
(元).已知生产出的产品都能以每件
元的价格售出.
(
)将该厂的利润
(元)表示为产量
(件)的函数.
(
)要使利润最大,该厂应生产多少件这样的产品?最大利润是多少?
同类题2
(本小题满分8分)要制作一个容积为16立方米,高为1米的无盖长方体容器,已知容器的底面造价是每平方米20元,侧面造价是每平方米10元,问如何设计才能使该容器的总造价最低,最低总造价是多少元?
同类题3
某食品的保鲜时间
(单位:小时)与储存温度
(单位:
)满足函数关系
(
为自然对数的底数,
为常数)若该食品在
的保鲜时间是384小时,在
的保鲜时间是24小时,则该食品在
的保险时间是( )小时
A.6
B.12
C.18
D.24
同类题4
某市垃圾处理站每月的垃圾处理量最少为400吨,最多为600吨,月处理成本
(元)与月垃圾处理量
(吨)之间的函数关系可近似地表示为
,且每处理一吨垃圾得到可利用的资源值为100元.
(1)该站每月垃圾处理量为多少吨时,才能使每吨垃圾的平均处理成本最低?
(2)该站每月能否获利?如果获利,求出最大利润;如果不获利,则需要市财政补贴,至少补贴多少元才能使该站不亏损?
同类题5
某油库的设计容量为30万吨,年初储量为10万吨,从年初起计划每月购进石油
万吨,以满足区域内和区域外的需求,若区域内每月用石油1万吨,区域外前
个月的需求量
(万吨)与
的函数关系为
,并且前4个月,区域外的需求量为20万吨.
(1)试写出第
个月石油调出后,油库内储油量
(万吨)与
的函数关系式;
(2)要使16个月内每月按计划购进石油之后,油库总能满足区域内和区域外的需求,且每月石油调出后,油库的石油剩余量不超过油库的容量,试确定
的取值范围.
相关知识点
函数与导数
函数的应用
函数模型及其应用