刷题首页
题库
高中数学
题干
水培植物需要一种植物专用营养液,已知每投放
(
且
)个单位的营养液,它在水中释放的浓度
(克/升)随着时间
(天)变化的函数关系式近似为
,其中
,若多次投放,则某一时刻水中的营养液浓度为每次投放的营养液在相应时刻所释放的浓度之和,根据经验,当水中营养液的浓度不低于4(克/升)时,它才能有效.
(1)若只投放一次2个单位的营养液,则有效时间最多可能达到几天?
(2)若先投放2个单位的营养液,3天后再投放
个单位的营养液,要使接下来的2天中,营养液能够持续有效,试求
的最小值.
上一题
下一题
0.99难度 解答题 更新时间:2018-09-04 08:25:10
答案(点此获取答案解析)
同类题1
如图所示,液体从一个圆锥形漏斗漏入一个圆柱形桶中,开始时漏斗中盛满液体,经过3秒漏完,圆柱形桶中液面上升速度是一个常量,则漏斗中液面下降的高度
H
与下降时间
t
之间的函数关系的图象只可能是( )
A.
B.
C.
D.
同类题2
“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度
(单位:千克/年)是养殖密度
(单位:尾/立方米)的函数.当
时,
的值为2千克/年;当
时,
是
的一次函数;当
时,因缺氧等原因,
的值为0千克/年.
(1)当
时,求
关于
的函数表达式.
(2)当养殖密度
为多少时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.
同类题3
某城市出租车的收费标准是:起步价5元(乘车不超过3千米);行驶3千米后,每千米车费1.2元;行驶10千米后,每千米车费1.8元.
(1)写出车费与路程的关系式;
(2)一乘客计划行程30千米,为了节省支出,他设计了三种乘车方案:
①不换车:乘一辆出租车行30千米;
②分两段乘车:先乘一辆车行15千米,换乘另一辆车再行15千米;
③分三段乘车:每乘10千米换一次车.
问哪一种方案最省钱?
同类题4
某公司利用
线上、实体店线下销售产品
,产品
在上市
天内全部售完.据统计,线上日销售量
、线下日销售量
(单位:件)与上市时间
天的关系满足:
,产品
每件的销售利润为
(单位:元)(日销售量
线上日销售量
线下日销售量).
(1)设该公司产品
的日销售利润为
,写出
的函数解析式;
(2)产品
上市的哪几天给该公司带来的日销售利润不低于
元?
同类题5
某国际性会议纪念章的一特许专营店销售纪念章,每枚进价为5元,同时每销售一枚这种纪念章还需向该会议的组织委员会交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时,该店一年可销售2000枚,经过市场调研发现,每枚纪念章的销售价格在每枚20元的基础上,每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为
元(每枚的销售价格应为正整数).
(1)写出该特许专营店一年内销售这种纪念章所获得的利润
(元)与每枚纪念章的销售价格
的函数关系式;
(2)当每枚纪念章销售价格
为多少元时,该特许专营店一年内利润
(元)最大,并求出这个最大值;
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
分段函数模型的应用
分式型函数模型的应用