刷题首页
题库
高中数学
题干
若函数
和
满足:
在区间
上均有定义;
函数
在区间
上至少有一个零点,则称
和
在
上具有关系W.
若
,
,判断
和
在
上是否具有关系W,并说明理由;
若
和
在
上具有关系W,求实数m的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2018-12-25 05:03:57
答案(点此获取答案解析)
同类题1
已知定义在R上的函数
是奇函数且满足,
,数列
满足
,且
,(其中
为
的前n项和).则
()
A.3
B.
C.
D.2
同类题2
已知函数f(x)=mx
2
+(1-3m)x-4,m∈R.
(1)当m=1时,求f(x)在区间-2,2上的最大值和最小值.
(2)解关于x的不等式f(x)>-1.
(3)当m<0时,若存在x
0
∈(1,+∞),使得f(x)>0,求实数m的取值范围.
同类题3
已知函数
是奇函数,当
时,
.若不等式
(
且
)对任意的
恒成立,则实数
的取值范围是( )
A.
B.
C.
D.
同类题4
已知
,符号
表示不超过
的最大整数,若函数
有且仅有
个零点,则
的取值范围是
A.
B.
C.
D.
同类题5
已知函数
,
,对函数
,
,定义
关于
的“对称函数”为函数
,
,
满足:对任意
,两个点
,
关于点
对称.若
是
关于
的“对称函数”,且
恒成立,则实数
的取值范围是______.
相关知识点
函数与导数
函数的应用