刷题宝
  • 刷题首页
题库 高中数学

题干

已知函数为对数函数,并且它的图象经过点,函数=在区间上的最小值为,其中.
(1)求函数的解析式;
(2)求函数的最小值的表达式;
(3)是否存在实数同时满足以下条件:①;②当的定义域为时,值域为.若存在,求出的值;若不存在,说明理由.
上一题 下一题 0.99难度 解答题 更新时间:2018-11-06 03:37:45

答案(点此获取答案解析)

同类题1

已知函数在上是增函数,求的取值范围.

同类题2

已知函数,,求函数的单调区间。

同类题3

若函数在区间上为减函数,则a的取值范围是(   )
A.B.C.D.(1,2

同类题4

定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界,已知函数.
(1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;
(2)若函数在上是以4为上界的有界函数,求实数的取值范围.

同类题5

己知.当时的值城为______.
相关知识点
  • 函数与导数
  • 一次函数与二次函数
  • 二次函数的性质与图象
  • 与二次函数相关的复合函数问题
  • 求对数函数的解析式
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)