刷题宝
  • 刷题首页
题库 高中数学

题干

设定义在上的函数满足:对于任意的、,当时,都有.
(1)若,求的取值范围;
(2)若为周期函数,证明:是常值函数;
(3)设恒大于零,是定义在上、恒大于零的周期函数,是的最大值.
函数. 证明:“是周期函数”的充要条件是“是常值函数”.
上一题 下一题 0.99难度 解答题 更新时间:2018-05-30 03:41:19

答案(点此获取答案解析)

同类题1

函数的图象大致是(  )
A.B.
C.D.

同类题2

求“方程的解”有如下解题思路:设函数,则函数在上单调递增,且,所以原方程有唯一解.类比上述解题思路,方程的解集为(   )
A.B.C.D.

同类题3

定义在R上的函数,当时,,则不等式的解集是_________.

同类题4

定义函数(为定义域)图像上的点到坐标原点的距离为函数的的模.若模存在最大值,则称之为函数的长距;若模存在最小值,则称之为函数的短距.
(1)分别判断函数与是否存在长距与短距,若存在,请求出;
(2)求证:指数函数的短距小于1;
(3)对于任意是否存在实数,使得函数的短距不小于2且长距不大于4.若存在,请求出的取值范围;不存在,则说明理由?

同类题5

定义在上的函数,其导函数为,且,,若当时,,则
A.B.
C.D.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 根据函数的最值求参数
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)