刷题首页
题库
高中数学
题干
某商品在某月的30天内每件销售价格
(元)与时间
(天)的函数关系式是
,该商品的日销售量
(件)与时间
(天)的函数关系式是
,求这种商品的日销售金额的最大值,并指出日销售金额最大的是30天中的第几天.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-27 08:39:34
答案(点此获取答案解析)
同类题1
某企业生产A,B两种产品,根据市场调查与预测,A产品的利润
与投资成正比,其关系如图①;B产品的利润
与投资的算术平方根成正比,其关系如图②.(注:利润和投资单位:万元)
(1)分别求出A,B两种产品的利润与投资之间的函数关系式;
(2)已知该企业已筹集到20万元资金,并将其全部投入A,B两种产品的生产,怎样分配这20万元投资,才能使该企业获得最大利润?其最大利润为多少万元?
同类题2
某企业参加
项目生产的工人为
人,平均每人每年创造利润
万元.根据现实的需要,从
项目中调出
人参与
项目的售后服务工作,每人每年可以创造利润
万元(
),
项目余下的工人每人每年创造利图需要提高
(1)若要保证
项目余下的工人创造的年总利润不低于原来
名工人创造的年总利润,则最多调出多少人参加
项目从事售后服务工作?
(2)在(1)的条件下,当从
项目调出的人数不能超过总人数的
时,才能使得
项目中留岗工人创造的年总利润始终不低于调出的工人所创造的年总利润,求实数
的取值范围.
同类题3
某汽车公司为调查4
S
店个数对该公司汽车销量的影响,对同等规模的
A
,
B
,
C
,
D
四座城市的4
S
店一个月某型号汽车销量进行了统计,结果如下表:
城市
A
B
C
D
4
S
店个数
x
3
4
6
7
销售台数
y
18
26
34
42
(1)由散点图知
y
与
x
具有线性相关关系,求
y
关于
x
的线性回归方程;
(2)根据统计每个城市汽车的盈利
(万元)与该城市4
S
店的个数
x
符合函数
,
,为扩大销售,该公司在同等规模的城市
E
预计要开设多少个4
S
店,才能使
E
市的4
S
店一个月某型号骑车销售盈利达到最大,并求出最大值.
附:回归方程
中的斜率和截距的最小二乘法估计公式分别为:
,
同类题4
某商品的进价为每件
元,售价为每件
元,每个月可卖出
件;如果每件商品在该售价的基础上每上涨
元,则每个月少卖
件(每件售价不能高于
元).设每件商品的售价上涨
元(
为正整数),每个月的销售利润为
元.
(1)求
与
的函数的函数关系式并直接写出自变量
的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
同类题5
某超市经营一批产品,在市场销售中发现此产品在30天内的日销售量P(件)与日期
)之间满足
,已知第5日的销售量为55件,第10日的销售量为50件.
(1)求第20日的销售量; (2)若销售单价Q(元/件)与
的关系式为
,求日销售额
的最大值.
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
利用二次函数模型解决实际问题
分段函数模型的应用