刷题宝
  • 刷题首页
题库 高中数学

题干

函数的定义域为D,若对于任意,当时,都有,则称函数在D上为非减函数;设函数在[0,1]上为非减函数,且满足以下三个条件:①f(0)=0;②;③f(1-x)=1-f(x),则=_________
上一题 下一题 0.99难度 填空题 更新时间:2020-01-02 05:12:26

答案(点此获取答案解析)

同类题1

已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数.
(1)已知,,,利用上述性质,求函数的单调区间和值域.
(2)对于(1)中的函数和函数,若对于任意的,总存在,使得成立,求实数的值.

同类题2

已知函数,对于任意的,都有, 当时,,且.
( I ) 求的值;
(II) 当时,求函数的最大值和最小值;
(III) 设函数,判断函数g(x)最多有几个零点,并求出此时实数m的取值范围.

同类题3

已知为定义在上的奇函数,若当时,(为实数),则关于的不等式的解集是(   )
A.B.C.D.

同类题4

求函数的最大值和最小值.

同类题5

如果函数满足:对定义域内的所有,存在常数,,都有,那么称是“中心对称函数”,对称中心是点.
(1)证明点是函数的对称中心;
(2)已知函数(且,)的对称中心是点.
①求实数的值;
②若存在,使得在上的值域为,求实数的取值范围.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)