刷题宝
  • 刷题首页
题库 高中数学

题干

设函数(其中为常数).
(1)根据实数的不同取值,讨论函数奇偶性;
(2)若,且在区间上单调递减,求实数的取值范围;
(3)若关于的不等式在时恒成立,求实数的取值范围.
上一题 下一题 0.99难度 解答题 更新时间:2020-01-11 06:54:30

答案(点此获取答案解析)

同类题1

已知函数,若,则实数的取值范围__________.

同类题2

对于区间,若函数同时满足:在上是单调函数;函数的值域是,则称区间为函数的“保值”区间.
求函数的所有“保值”区间.
函数是否存在“保值”区间?若存在,求出实数m的取值范围;若不存在,说明理由.

同类题3

已知函数满足,且在上单调递增,则(  )
A.B.
C.D.

同类题4

已知关于x的一元二次函数,分别从集合和中随机取一个数和得到数对.
(1)若,,求函数在内是偶函数的概率;
(2)若,,求函数有零点的概率;
(3)若,,求函数在区间上是增函数的概率.

同类题5

函数的定义域为(为实数).
(1)若函数在定义域上是减函数,求的取值范围;
(2)若在定义域上恒成立,求的取值范围.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的单调性
  • 函数单调性的应用
  • 利用函数单调性求最值
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)