刷题宝
  • 刷题首页
题库 高中数学

题干

对于函数,若存在实数对,使得等式对定义域中的每一个都成立,则称函数是“型函数”.
(1)判断函数是否为“型函数”,并说明理由;
(2)(ⅰ)若函数是“型函数”,已知,求;
(ⅱ)若函数是“型函数”,且当时,,若当时,都有成立,试求的取值范围.
上一题 下一题 0.99难度 解答题 更新时间:2020-01-11 02:01:07

答案(点此获取答案解析)

同类题1

已知函数;
(1)若函数在区间上的最小值为,求实数的取值范围;
(2)是否存在整数,,使得关于的不等式的解集恰好为,若存在,求出,的值,若不存在,请说明理由.

同类题2

已知函数, 其中.
()若函数的图象关于直线对称,求的值.
()若函数在区间上的最小值是,求的值.

同类题3

已知二次函数满足,且的最小值是.
求的解析式;
若关于x的方程在区间上有唯一实数根,求实数m的取值范围;
函数,对任意,都有恒成立,求实数t的取值范围.

同类题4

已知函数
(1)讨论的奇偶性,并说明理由;
(2)若对任意实数恒成立,求实数的取值范围;
(3)若在上有最大值9,求的值.

同类题5

已知函数.
(Ⅰ)若的值域为,求的值;
(Ⅱ)巳,是否存在这祥的实数,使函数在区间内有且只有一个零点.若存在,求出的取值范围;若不存在,请说明理由.
相关知识点
  • 函数与导数
  • 一次函数与二次函数
  • 二次函数的性质与图象
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)