- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 求扇形统计图的某项数目
- + 求扇形统计图的圆心角
- 由扇形统计图求某项的百分比
- 由扇形统计图求总量
- 由扇形统计图推断结论
- 条形统计图和扇形统计图信息关联
- 观察、猜想与证明
- 实践与应用(暂存)
某超市销售多种颜色的运动服装,其中平均每天销售红、黄、蓝、白四种颜色运动服的数量如表,由此绘制的不完整的扇形统计图如图:
四种颜色服装销量统计表

(1)求表中m、n、α的值,并将扇形统计图补充完整:
表中m= ,n= ,α= ;
(2)为吸引更多的顾客,超市将上述扇形统计图制成一个可自由转动的转盘,并规定:顾客在本超市购买商品金额达到一定的数目,就获得一次转动转盘的机会.如果转盘停止后,指针指向红色服装区域、黄色服装区域,可分别获得60元、20元的购物券.求顾客每转动一次转盘获得购物券金额的平均数.
四种颜色服装销量统计表
服装颜色 | 红 | 黄 | 蓝 | 白 | 合计 |
数量(件) | 20 | n | 40 | 1.5n | m |
所对扇形的圆心角 | | α | 90° | | 60° |

(1)求表中m、n、α的值,并将扇形统计图补充完整:
表中m= ,n= ,α= ;
(2)为吸引更多的顾客,超市将上述扇形统计图制成一个可自由转动的转盘,并规定:顾客在本超市购买商品金额达到一定的数目,就获得一次转动转盘的机会.如果转盘停止后,指针指向红色服装区域、黄色服装区域,可分别获得60元、20元的购物券.求顾客每转动一次转盘获得购物券金额的平均数.
某市每年都要举办中小学三独比赛(包括独唱、独舞、独奏三个类别),如图是该市2012年参加三独比赛的不完整的参赛人数统计图.

(1)该市参加三独比赛的总人数是 人,图中独唱所在扇形的圆心角的度数是 度,并把条形统计图补充完整;
(2)从这次参赛选手中随机抽取20人调查,其中有9人获奖,请你估算今年全市约有多少人获奖?

(1)该市参加三独比赛的总人数是 人,图中独唱所在扇形的圆心角的度数是 度,并把条形统计图补充完整;
(2)从这次参赛选手中随机抽取20人调查,其中有9人获奖,请你估算今年全市约有多少人获奖?
济南以“泉水”而闻名,为保护泉水,造福子孙后代,济南市积极开展“节水保泉”活动,宁宁利用课余时间对某小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,宁宁将5月份各户居民的节水量统计整理如下统计图表:

(1)300户居民5月份节水量的众数,中位数分别是多少米3?
(2)扇形统计图中2.5米3对应扇形的圆心角为 度;
(3)该小区300户居民5月份平均每户节约用水多少米3?

节水量(米3) | 1 | 1.5 | 2.5 | 3 |
户数 | 50 | 80 | 100 | 700 |
(1)300户居民5月份节水量的众数,中位数分别是多少米3?
(2)扇形统计图中2.5米3对应扇形的圆心角为 度;
(3)该小区300户居民5月份平均每户节约用水多少米3?
我市为了解九年级学生身体素质测试情况,随机抽取了本市九年级部分学生的身体素质测试成绩为样本,按A(优秀)、B(良好)、C(合格)、D(不合格)四个等级进行统计,并将统计结果绘制成如下统计图表,如图,请你结合图表所给信息解答下列问题:

(1)请将上面表格中缺少的数据补充完整;
(2)扇形统计图中“A”部分所对应的圆心角的度数是 ;
(3)若我市九年级共有50000名学生参加了身体素质测试,试估计测试成绩合格以上(含合格)的人数为__________人;
(4)若甲校体育教师中有3名男教师和2名女教师,乙校体育教师中有2名男教师和2名女教师,从甲乙两所学校的体育教师中各抽取1名体育教师去测试学生的身体素质,用树状图或列表法求刚好抽到的体育教师是1男1女的概率.
等级 | A(优秀) | B(良好) | C(合格) | D(不合格) |
人数 | 200 | 400 | 280 | |

(1)请将上面表格中缺少的数据补充完整;
(2)扇形统计图中“A”部分所对应的圆心角的度数是 ;
(3)若我市九年级共有50000名学生参加了身体素质测试,试估计测试成绩合格以上(含合格)的人数为__________人;
(4)若甲校体育教师中有3名男教师和2名女教师,乙校体育教师中有2名男教师和2名女教师,从甲乙两所学校的体育教师中各抽取1名体育教师去测试学生的身体素质,用树状图或列表法求刚好抽到的体育教师是1男1女的概率.
某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:

(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)
(1)请把条形统计图补充完整;
(2)样本中D级的学生人数占全班学生人数的百分比是 ;
(3)扇形统计图中A级所在的扇形的圆心角度数是 ;
(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数共约为人.

(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)
(1)请把条形统计图补充完整;
(2)样本中D级的学生人数占全班学生人数的百分比是 ;
(3)扇形统计图中A级所在的扇形的圆心角度数是 ;
(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数共约为人.
2008京奥运会后,同学们参与体育锻炼的热情高涨.为了解他们平均每周的锻炼时间,小明同学在校内随机调查了50名同学,统计并制作了如下的频数分布表和扇形统计图.

根据上述信息解答下列问题:
(1)m=______,n=_________;
(2)在扇形统计图中,D组所占圆心角的度数为_____________;
(3)全校共有3000名学生,估计该校平均每周体育锻炼时间不少于6小时的学生约有多少名?
组别 | 锻炼时间(时/周) | 频数 |
A | 1.5≤t<3 | l |
B | 3≤t<4.5 | 2 |
C | 4.5≤t<6 | m |
D | 6≤t<7.5 | 20 |
E | 7.5≤t<9 | 15 |
F | t≥9 | n |

根据上述信息解答下列问题:
(1)m=______,n=_________;
(2)在扇形统计图中,D组所占圆心角的度数为_____________;
(3)全校共有3000名学生,估计该校平均每周体育锻炼时间不少于6小时的学生约有多少名?
果农老张进行杨梅科学管理试验.把一片杨梅林分成甲、乙两部分,甲地块用新技术管理,乙地块用老方法管理,管理成本相同.在甲、乙两地块上各随机选取20棵杨梅树,根据每棵树产量把杨梅树划分成A,B,C,D,E五个等级(甲、乙的等级划分标准相同,每组数据包括左端点不包括右端点).画出统计图如下:

(1)补齐直方图,求
的值及相应扇形的圆心角度数;
(2)选择合适的统计量,比较甲乙两地块的产量水平,并说明试验结果;
(3)若在甲地块随机抽查1棵杨梅树,求该杨梅树产量等级是B的概率.

(1)补齐直方图,求

(2)选择合适的统计量,比较甲乙两地块的产量水平,并说明试验结果;
(3)若在甲地块随机抽查1棵杨梅树,求该杨梅树产量等级是B的概率.
为推进阳光体育活动的开展,某校九年级三班同学组建了足球、篮球、乒乓球、跳绳四个体育活动小组.经调查全班同学全员参与,各活动小组人数分布情况的扇形图和条形图如下:

(1)求该班学生人数;
(2)请你补上条形图的空缺部分;
(3)求跳绳人数所占扇形圆心角的大小.

(1)求该班学生人数;
(2)请你补上条形图的空缺部分;
(3)求跳绳人数所占扇形圆心角的大小.
某中学为了了解学生体育活动情况,随即调查了720名初二学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”,利用所得的数据制成了扇形统计图和频数分布直方图.根据图示,解答下列问题:

(1)若在被调查的学生中随机选出一名学生测试其体育成绩,选出的是“每天锻炼超过1小时”的学生的概率是多少?
(2)“没时间”锻炼的人数是多少?并补全频数分布直方图;
(3)2012年宁波市区初二学生约为2万人,按此调查,可以估计2012年宁波市区初二学生中每天锻炼未超过1小时的学生约有多少万人?
(4)请根据以上结论谈谈你的看法.

(1)若在被调查的学生中随机选出一名学生测试其体育成绩,选出的是“每天锻炼超过1小时”的学生的概率是多少?
(2)“没时间”锻炼的人数是多少?并补全频数分布直方图;
(3)2012年宁波市区初二学生约为2万人,按此调查,可以估计2012年宁波市区初二学生中每天锻炼未超过1小时的学生约有多少万人?
(4)请根据以上结论谈谈你的看法.
学生的学习兴趣如何是每位教师非常关注的问题.为此,某校教师对该校部分学生的学习兴趣进行了一次抽样调查(把学生的学习兴趣分为三个层次,A层次:很感兴趣;B层次:较感兴趣;C层次:不感兴趣);并将调查结果绘制成了图①和图②的统计图(不完整).请你根据图中提供的信息,解答下列问题:

(1)此次抽样调查中,共调查了200 名学生;
(2)将图①补充完整;
(3)求图②中C层次所在扇形的圆心角的度数;
(4)根据抽样调查的结果,请你估计该校1200名学生中大约有多少名学生对学习感兴趣(包括A层次和B层次).

(1)此次抽样调查中,共调查了200 名学生;
(2)将图①补充完整;
(3)求图②中C层次所在扇形的圆心角的度数;
(4)根据抽样调查的结果,请你估计该校1200名学生中大约有多少名学生对学习感兴趣(包括A层次和B层次).