- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- + 统计调查
- 调查收集数据的过程与方法
- 总体、个体、样本、样本容量
- 统计表
- 扇形统计图
- 折线统计图
- 直方图
- 观察、猜想与证明
- 实践与应用(暂存)
每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水•珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:
七、八年级抽取的学生竞赛成绩统计表
根据以上信息,解答下列问题:
(1)直接写出上述图表中a,b,c的值;
(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);
(3)该校七、八年级共720人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≥90)的学生人数是多少?
A.80≤x<85, | B.85≤x<90, | C.90≤x<95, | D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82;八年级10名学生的竞赛成绩在C组中的数据是:94,90,94. |
年级 | 七年级 | 八年级 |
平均数 | 92 | 92 |
中位数 | 93 | b |
众数 | c | 100 |
方差 | 52 | 50.4 |
根据以上信息,解答下列问题:
(1)直接写出上述图表中a,b,c的值;
(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);
(3)该校七、八年级共720人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≥90)的学生人数是多少?

下列说法正确的是( )
A.九年级某班的英语测试平均成绩是98.5,说明每个同学的得分都是98.5分 |
B.数据4,4,5,5,0的中位数和众数都是5 |
C.要了解一批日光灯的使用寿命,应采用全面调查 |
D.若甲、乙两组数据中各有20个数据,两组数据的平均数相等,方差S甲2=1.25,S乙2=0.96,则说明乙组数数据比甲组数据稳定 |
“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:

(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 度;
(2)请补全条形统计图;
(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.

(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 度;
(2)请补全条形统计图;
(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.
先锋中学数学课题组为了了解初中学生阅读数学教科书的现状,随机抽取某校部分初中学生进行调查,调查结果分为“重视”、“一般”、“不重视”、“说不清楚”四种情况(依次用A、B、C、D表示),依据相关数据绘制成以下不完整的统计表和统计图,请根据图表中的信息解答下列问题:

(1)求样本容量及表格中a,b,c的值,并补全统计图;
(2)若该校共有2000名学生,请估计该校“不重视阅读数学教科书”的学生人数.
类别 | 频数 | 频率 |
重视 | a | 0.25 |
一般 | 60 | 0.3 |
不重视 | b | c |
说不清楚 | 10 | 0.05 |

(1)求样本容量及表格中a,b,c的值,并补全统计图;
(2)若该校共有2000名学生,请估计该校“不重视阅读数学教科书”的学生人数.
学校为了解九年级学生对“八礼四仪”的掌握情况,对该年级的500名同学进行问卷测试,并随机抽取了10名同学的问卷,统计成绩如下:
(1)计算这10名同学这次测试的平均得分;
(2)如果得分不少于9分的定义为“优秀”,估计这 500名学生对“八礼四仪”掌握情况优秀的人数;
(3)小明所在班级共有40人,他们全部参加了这次测试,平均分为7.8分.小明的测试成绩是8分,小明说,我的测试成绩在班级中等偏上,你同意他的观点吗?为什么?
得分 | 10 | 9 | 8 | 7 | 6 |
人数 | 3 | 3 | 2 | 1 | 1 |
(1)计算这10名同学这次测试的平均得分;
(2)如果得分不少于9分的定义为“优秀”,估计这 500名学生对“八礼四仪”掌握情况优秀的人数;
(3)小明所在班级共有40人,他们全部参加了这次测试,平均分为7.8分.小明的测试成绩是8分,小明说,我的测试成绩在班级中等偏上,你同意他的观点吗?为什么?
某校八年级共有
名学生,他们在参加电脑培训前后各参加了一次水平相同的考试,为了了解培训的效果,随机抽取了其中
名学生的成绩绘制成如图所示的统计图.试估计该校整个八年级中,培训后考试等级为“合格”及以上的学生比培训前多________人.



2019年是中华人民共和国成立70周年,某校将开展“爱我中华,了解历史”为主题的知识竞赛,八年级某老师为了解所任教的甲,乙两班学生相关知识的掌握情况,对两个班的学生进行了中国历史知识检测,满分为100分.现从两个班分别随机抽取了20名学生的检测成绩进行整理、描述和分析,下面给出了部分信息: (成绩得分用x表示,共分为五组,A组: 0≤x<80, B组: 80≤x<85, C组: 85≤x<90, D组: 90≤x<95, E组: 95≤x≤100)
甲班20名学生的成绩为:
82,85,96,73,91,99,87,91,86,91
87, 94,89, 96,96,91,100,93,94, 99
乙班20名学生的成绩在D组中的数据是: 91,92,92,92,92,93,94
甲,乙两班抽取的学生成绩数据统计表:

根据以上信息,解答下列问题:
(1)请直接写出上述统计表中a, b的值:a= , b= ;
(2)若甲,乙两班总人数为120名,且都参加了此次知识检测,若规定成绩得分x≥95为优秀,请估计此次检测成绩优秀的学生人数是多少名?
甲班20名学生的成绩为:
82,85,96,73,91,99,87,91,86,91
87, 94,89, 96,96,91,100,93,94, 99
乙班20名学生的成绩在D组中的数据是: 91,92,92,92,92,93,94
甲,乙两班抽取的学生成绩数据统计表:

根据以上信息,解答下列问题:
(1)请直接写出上述统计表中a, b的值:a= , b= ;
(2)若甲,乙两班总人数为120名,且都参加了此次知识检测,若规定成绩得分x≥95为优秀,请估计此次检测成绩优秀的学生人数是多少名?

某校想知道学生对宜宾着力打造生态城市,三江六岸投入300多亿元实施长江生态综合治理工程的了解程度,在该校随机抽取了部分学生进行问卷,问卷有以下四个选项:
:十分了解;
:了解较多;
:了解较少;
:不了解(要求:每名被调查的学生必选且只能选择一项),现将调查的结果绘制成两幅不完整的统计图.请根据两幅统计图中的信息回答下列问题.
(1)在被调查的人中,“了解较多”的人数是 人;
(2)扇形统计图中的选项“了解较少”部分所占扇形的圆心角的大小为 ;
(3)若该校共有2000名学生,请你根据上述调查结果,估计该校学生对宜宾着力打造生态城市,三江六岸投入300多亿元实施长江生态综合治理工程的了解程度“十分了解”和“了解较多”的学生共有多少名?




(1)在被调查的人中,“了解较多”的人数是 人;
(2)扇形统计图中的选项“了解较少”部分所占扇形的圆心角的大小为 ;
(3)若该校共有2000名学生,请你根据上述调查结果,估计该校学生对宜宾着力打造生态城市,三江六岸投入300多亿元实施长江生态综合治理工程的了解程度“十分了解”和“了解较多”的学生共有多少名?

为了了解我市中学生跳绳活动开展的情况,随机抽查了全市八年级部分同学1分钟跳绳的次数,将抽查结果进行统计,并绘制成如下的两个不完整的统计图:

请根据图中提供的信息,解答下列问题:
(1)本次共抽查了多少名学生?请补全频数分布直方图;
(2)若本次抽查中,跳绳次数在125次以上(含125次)为优秀,请你估计全市8000名八年级学生中有多少名学生的成绩为优秀;
(3)请你根据以上信息,对我市开展的学生跳绳活动情况谈谈自己的看法或建议.

请根据图中提供的信息,解答下列问题:
(1)本次共抽查了多少名学生?请补全频数分布直方图;
(2)若本次抽查中,跳绳次数在125次以上(含125次)为优秀,请你估计全市8000名八年级学生中有多少名学生的成绩为优秀;
(3)请你根据以上信息,对我市开展的学生跳绳活动情况谈谈自己的看法或建议.
积极响应市委市政府“加快建设绿水青山的美丽乐山”的号召,我市某街道决定从备选的五种树中选购一种进行栽种.为了更好地了解社情民意,工作人员在街道辖区范围内随机抽取了部分居民,进行“我最喜欢的一种树”的调查活动(每人限选其中一种树),并将调查结果整理后,绘制成如图所示两个不完整的统计图:

请根据所给信息解答以下问题:
(1)这次参与调查的居民人数为______;
(2)请将条形和扇形统计图补充完整;
(3)请计算扇形统计图中“枫树”所在扇形的圆心角度数;
(4)已知该街道辖区内现有居民2万人,请你估计这2万人中最喜欢玉兰树的有多少人.

请根据所给信息解答以下问题:
(1)这次参与调查的居民人数为______;
(2)请将条形和扇形统计图补充完整;
(3)请计算扇形统计图中“枫树”所在扇形的圆心角度数;
(4)已知该街道辖区内现有居民2万人,请你估计这2万人中最喜欢玉兰树的有多少人.