PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.根据PM2.5检测网的空气质量新标准,从德州市2013年全年每天的PM2.5日均值标准值(单位:微克/立方米)监测数据中随机地抽取25天的数据作为样本,并根据检测数据制作了尚不完整的频数分布表和条形图:


(1)求出表中m,n,a的值,并将条形图补充完整;
(2)以这25天的PM2.5日均值来估计该年的空气质量情况,估计该年(365天)大约有多少天的空气质量达到优或良;
(3)请你结合图表评价一下我市的空气质量情况.


(1)求出表中m,n,a的值,并将条形图补充完整;
(2)以这25天的PM2.5日均值来估计该年的空气质量情况,估计该年(365天)大约有多少天的空气质量达到优或良;
(3)请你结合图表评价一下我市的空气质量情况.
以下问题,不适合用全面调查的是( )
A.旅客上飞机前的安检 | B.学校招聘教师,对应聘人员的面试 |
C.了解全校学生的课外读书时间 | D.了解全国中学生的用眼卫生情况 |
某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表所示(其中每个分数段可包括最小值,不包括最大值),结合表的信息,可测得测试分数在80~90分数段的学生有________ 名.

某区在实施居民用水管理前,随机调查了部分家庭(单位:户)去年的月均用水量(单位:t),并将调查数据进行整理,绘制出如下不完整的统计图表:

请解答以下问题:
(1)把上面的频数分布表和频数分布直方图补充完整;
(2)若该小区有2000户家庭,根据此次随机抽查的数据估计,该小区月均用水量不低于20t的家庭有多少户?
(3)为了鼓励节约用水,要确定一个月均用水量的标准,超出该标准的部分按1.5倍价格收费,若要使68%的家庭水费支出不受影响,那么,你觉得家庭月均用水量应定为多少?

请解答以下问题:
(1)把上面的频数分布表和频数分布直方图补充完整;
(2)若该小区有2000户家庭,根据此次随机抽查的数据估计,该小区月均用水量不低于20t的家庭有多少户?
(3)为了鼓励节约用水,要确定一个月均用水量的标准,超出该标准的部分按1.5倍价格收费,若要使68%的家庭水费支出不受影响,那么,你觉得家庭月均用水量应定为多少?
定向越野作为一种新兴的运动项目,深受人们的喜爱. 这种定向运动是利用地图和指北针到访地图上所指示的各个点标,以最短时间按序到达所有点标者为胜. 下面是我区某校进行定向越野活动中,中年男子组的成绩(单位:分:秒).
9:01 14:45 9:46 19:22 11:20 18:47 11:40 12:32 11:52 13:45
22:27 15:00 17:30 13:22 18:34 10:45 19:24 16:26 21:33 15:31
19:50 14:27 15:55 16:07 20:43 12:13 21:41 14:57 11:39 12:45
12:57 15:31 13:20 14:50 14:57 9:41 12:13 14:27 12:25 12:38
例如,用时最少的赵老师的成绩为9:01,表示赵老师的成绩为9分1秒.

以下是根据某校进行定向越野活动中,中年男子组的成绩中的数据,绘制的统计图表的一部分.
某校中年男子定向越野成绩分段统计表
(1)这组数据的极差是____________;
(2)上表中的a =____________ ,b =____________ , c =____________, d =____________;
(3)补全频数分布直方图.
9:01 14:45 9:46 19:22 11:20 18:47 11:40 12:32 11:52 13:45
22:27 15:00 17:30 13:22 18:34 10:45 19:24 16:26 21:33 15:31
19:50 14:27 15:55 16:07 20:43 12:13 21:41 14:57 11:39 12:45
12:57 15:31 13:20 14:50 14:57 9:41 12:13 14:27 12:25 12:38
例如,用时最少的赵老师的成绩为9:01,表示赵老师的成绩为9分1秒.

以下是根据某校进行定向越野活动中,中年男子组的成绩中的数据,绘制的统计图表的一部分.
某校中年男子定向越野成绩分段统计表
分组/分 | 频数 | 频率 |
9≤x<11 | 4 | 0.1 |
11≤x<13 | b | 0.275 |
13≤x<15 | 9 | 0.225 |
15≤x<17 | 6 | d |
17≤x<19 | 3 | 0.075 |
19≤x<21 | 4 | 0.1 |
21≤x<23 | 3 | 0.075 |
合计 | a | c |
(1)这组数据的极差是____________;
(2)上表中的a =____________ ,b =____________ , c =____________, d =____________;
(3)补全频数分布直方图.
为了考察某种大麦细长的分布情况,在一块试验田里抽取了部分麦穗.测得它们的长度,数据整理后的频数分布表及频数分直方图如下.根据以下信息,解答下列问题:
(Ⅰ)补全直方图;
(Ⅱ)共抽取了麦穗 棵;
(Ⅲ)频数分布表的组距是 ,组数是 ;
(Ⅳ)麦穗长度在5.8≤x<6.1范围内麦穗有多少棵?占抽取麦穗的百分之几?
穗长x | 频数 |
4.0≤x<4.3 | 1 |
4.3≤x<4.6 | 1 |
4.6≤x<4.9 | 2 |
4.9≤x<5.2 | 5 |
5.2≤x<5.5 | 11 |
5.5≤x<5.8 | 15 |
5.8≤x<6.1 | 28 |
6.1≤x<6.4 | 13 |
6.4≤x<6.7 | 11 |
6.7≤x<7.0 | 10 |
7.0≤x<7.3 | 2 |
7.3≤x<7.6 | 1 |
(Ⅰ)补全直方图;
(Ⅱ)共抽取了麦穗 棵;
(Ⅲ)频数分布表的组距是 ,组数是 ;
(Ⅳ)麦穗长度在5.8≤x<6.1范围内麦穗有多少棵?占抽取麦穗的百分之几?

今年4月22日拉开了锦州市第七届读书节活动,某校开展了“书香校园”主题教育活动
为了了解学生的课外阅读情况,学校学生会对八年级部分学生2018年以来课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本数最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:
统计图表中的
______,
______.
请将频数分布直方图补充完整.
求所有被调查学生2018年以来课外阅读的平均本数.
若该校八年级共有600名学生,请你估计该校八年级学生2018年以来课外阅读7本及以上的人数.

本数![]() ![]() | 频数![]() ![]() | 频率 |
5 | a | ![]() |
6 | 18 | ![]() |
7 | 14 | ![]() |
8 | 8 | ![]() |
合计 | b | 1 |







为参加全区的“我爱古诗词”知识竞赛,王晓所在学校组织了一次古诗词知识测试
王晓从全体学生中随机抽取部分同学的分数
得分取正整数,满分为100分
进行统计
以下是根据这次测试成绩制作的进行统计,以下是根据这次测试成绩制作的不完整的频率分布表和频率分布直方图
请根据以上频率分布表和布直方图,回答下列问题:
(1)分别求出a、b、m、n的值;
写出计算过程
(2)老师说:“王晓的测试成绩是被抽取的同学成绩的中位数”,那么王晓的测试成绩在什么范围内?
(3)得分在
的为“优秀”,若王晓所在学校共有600名学生,从本次比赛选取得分为“优秀”的学生参加区赛,请问共有多少名学生被选拔参加区赛?





组别 | 分组 | 频数 | 频率 |
1 | ![]() | 9 | ![]() |
2 | ![]() | m | b |
3 | ![]() | 21 | ![]() |
4 | ![]() | a | ![]() |
5 | ![]() | 2 | n |
(1)分别求出a、b、m、n的值;


(2)老师说:“王晓的测试成绩是被抽取的同学成绩的中位数”,那么王晓的测试成绩在什么范围内?
(3)得分在


为了了解本校八年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐次数,并给制成如图所示的频数分布直方图,请根据图中信息,计算仰卧起坐次数在
次的频率是______


某公司为了解员工对“六五”普法知识的知晓情况,从本公司随机选取40名员工进行普法知识考查,对考查成绩进行统计
成绩均为整数,满分100分
,并依据统计数据绘制了如下尚不完整的统计表
解答下列问题:
表中
______,
______,
______;
请补全频数分布直方图;
该公司共有员工3000人,若考查成绩80分以上
不含80分
为优秀,试估计该公司员工“六五”普法知识知晓程度达到优秀的人数.



组别 | 分数段![]() | 频数![]() | 频率 |
1 | ![]() | 2 | a |
2 | ![]() | 6 | ![]() |
3 | ![]() | b | c |
4 | ![]() | 12 | ![]() |
5 | ![]() | 6 | ![]() |
合计 | 40 | ![]() |








