我们知道:有一内角为直角的三角形叫做直角三角形.类似地我们定义:有一内角为45°的三角形叫做半直角三角形.如图,在平面直角坐标系中,O为原点,A(4,0),B(-4,0),D是y轴上的一个动点,∠ADC=90°(A、D、C按顺时针方向排列), BC与经过A、B、D三点的⊙M交于点E,DE平分∠ADC,连结AE,B
A.显然ΔDCE、ΔDEF、ΔDAE是半直角三角形.

(1)求证:ΔABC是半直角三角形;
(2)求证:∠DEC=∠DEA;
(3)若点D的坐标为(0,8),求AE的长;
(4)BC交y轴于点N,问的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.
当前题号:1 | 题型:解答题 | 难度:0.99
如图,在△ABC中,∠ACB=90°,∠B=36°,以C为圆心,CA为半径的圆交AB于点D,交BC于点
A.求弧AD所对的圆心角的度数_____.
当前题号:2 | 题型:填空题 | 难度:0.99
如图,AB是⊙O的弦,点C、D在AB上,且AC=B
A.判断△OCD的形状,并说明理由.
当前题号:3 | 题型:解答题 | 难度:0.99
如图,C是扇形OAB的上一点,若四边形OACB是平行四边形,则∠ACB=_____°.
当前题号:4 | 题型:填空题 | 难度:0.99
某同学在探究证明“圆内接四边形对角互补”时,画出了下图,并写出了如下证明过程:

数学老师说该同学的思考不够全面,请将其缺失的证明过程补充完整.
当前题号:5 | 题型:解答题 | 难度:0.99
如图,平面直角坐标系中,点A(﹣4,0),点E (4,0),以AO为直径作⊙D,点G是⊙D上一动点,以EG为腰向下作等腰直角三角形EGF,连接DF,则DF的最大值是_____.
当前题号:6 | 题型:填空题 | 难度:0.99
如图所示,的弦,,则的度数为(   )
A.40°B.50°C.80°D.100°
当前题号:7 | 题型:单选题 | 难度:0.99
如图,半径,点中点,上一点,且,若,则的长为(   )
A.B.C.D.
当前题号:8 | 题型:单选题 | 难度:0.99
如图,四边形PAOB是扇形OMN的内接矩形,顶点P上,且不与MN重合,当P点在上移动时,矩形PAOB的形状,大小随之变化,则AB的长度(  )
A.不变B.变小C.变大D.不能确定
当前题号:9 | 题型:单选题 | 难度:0.99
在圆O中半径OC垂直于直径AB,E、F分别是OC,OA上的一点,且OE=OF,CF与BE的延长线相交于点G,求证:BG⊥CF.
当前题号:10 | 题型:解答题 | 难度:0.99