已知,如图(1),
为⊙
的割线,直线
与⊙
有公共点
, 且
,
(1)求证:
; 直线
是⊙
的切线;
(2)如图(2) , 作弦
,使
连接AD、BC,若
,求⊙
的半径;
(3)如图(3),若⊙
的半径为
,
,
,
,⊙
上是否存在一点
, 使得
有最小值?若存在,请求出这个最小值;若不存在,说明理由.








(1)求证:



(2)如图(2) , 作弦




(3)如图(3),若⊙











如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接D
A.给出以下结论:①DG=DF; ②四边形EFDG是菱形; ③![]() ④当 ![]() ![]() ![]() | B.1 | C.2 | D.3 | E.4 |
如图,小明同学在将一张矩形纸片ABCD的四个角向内折起时,发现恰好能拼成一个无缝隙无重叠的四边形EFGH。于是他测量出EH=12cm,EF=16cm,根据这两个数据他很快求出了边AD的长,则边AD的长是( )


A.12cm | B.16cm | C.20cm | D.28cm |