- 数与式
- 方程与不等式
- 从算式到方程
- + 解一元一次方程
- 解一元一次方程(一)——合并同类项与移项
- 解一元一次方程(二)——去括号
- 解一元一次方程(三)——去分母
- 解一元一次方程——拓展
- 实际问题与一元一次方程
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
解下列方程
(1)(x﹣8)(x﹣1)=﹣12;
(2)3(x﹣5)2=2(5﹣x).
(3)y2-7y+6=0;
(4)2x2-4x-3=0;
(1)(x﹣8)(x﹣1)=﹣12;
(2)3(x﹣5)2=2(5﹣x).
(3)y2-7y+6=0;
(4)2x2-4x-3=0;
HW公司2018年使用自主研发生产的“QL“系列甲、乙、丙三类芯片共2800万块,生产了2800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲,乙两类芯片产量的和还多400万块.这些“QL“芯片解决了该公司2018年生产的全部手机所需芯片的10%.
(1)求2018年甲类芯片的产量.
(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1%,丙类芯片的产量每年按相同的数量3200万块递增.这样,2020年的HW公司的手机产量比2018年全年的手机产量多10%,求m的值.
(1)求2018年甲类芯片的产量.
(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1%,丙类芯片的产量每年按相同的数量3200万块递增.这样,2020年的HW公司的手机产量比2018年全年的手机产量多10%,求m的值.
水果店张阿姨以每千克2元的价格购进某种水果若干千克,销售一部分后,根据市场行情降价销售,销售额y (元)与销售量x (千克)之间的关系如图所示.

(1)情境中的变量有_______________.
(2)求降价后销售额y (元)与销售量x (千克)之间的函数表达式;
(3)当销售量为多少千克时,张阿姨销售此种水果的利润为150元?

(1)情境中的变量有_______________.
(2)求降价后销售额y (元)与销售量x (千克)之间的函数表达式;
(3)当销售量为多少千克时,张阿姨销售此种水果的利润为150元?
如图,在
中,
,
,
交
于点
.动点
从点
出发,按
的路径运动,且速度为
,设出发时间为
.

(1)求
的长.
(2)当
时,求证:
.
(3)当点
在
边上运动时,若
是以
为腰的等腰三角形,求出所有满足条件的
的值.
(4)在整个运动过程中,若
(
为正整数),则满足条件的
的值有________个.












(1)求

(2)当


(3)当点





(4)在整个运动过程中,若



如图1,点P,Q分别是边长为4 cm的等边△ABC边AB,BC上的动点,点P从顶点A,点Q从顶点B同时出发,都以1 cm/s的速度分别向B,C运动.
(1)连接AQ,CP交于点M,则P,Q运动的过程中,∠CMQ的大小变化吗?若变化,说明理由;若不变,求出它的度数;
(2)何时△PBQ是直角三角形?
(3)如图2,若点P,Q在运动到终点后继续在射线 AB,BC上运动,直线AQ,CP交于点M,则∠CMQ的度数为。
(1)连接AQ,CP交于点M,则P,Q运动的过程中,∠CMQ的大小变化吗?若变化,说明理由;若不变,求出它的度数;
(2)何时△PBQ是直角三角形?
(3)如图2,若点P,Q在运动到终点后继续在射线 AB,BC上运动,直线AQ,CP交于点M,则∠CMQ的度数为。
