- 数与式
- + 有理数
- 正数和负数
- 有理数的初步认识
- 数轴
- 相反数
- 绝对值
- 有理数大小比较
- 有理数的运算
- 实数
- 代数式
- 因式分解
- 分式
- 二次根式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如表给出了七(1)班6名学生的身高记录情况(单位:厘米),已知A、D、F同学的实际身高为157厘米、154厘米和165厘米.
(1)列式计算表中的数据a和b;
(2)求6名学生平均身高是多少?
学生 | A | B | C | D | E | F |
身高记录 | ﹣3 | +2 | ﹣1 | a | +3 | b |
(1)列式计算表中的数据a和b;
(2)求6名学生平均身高是多少?
已知:多项式式x2-2xy-1的常数项是a,次数是b.
(1)计算:a2-2ab + b2-10的值.
(2)点A在数轴上表示的有理数是a,点B在数轴上表示的有理数是b,数轴上A、B之间的距离记作
定义:
=
①设点P在数轴上对应的数为t,当
=13时,求:t2-5t +7的值.
②式子
的最小值是________,取得最小值时x的取值范围是_____.
(1)计算:a2-2ab + b2-10的值.
(2)点A在数轴上表示的有理数是a,点B在数轴上表示的有理数是b,数轴上A、B之间的距离记作



①设点P在数轴上对应的数为t,当

②式子

在数轴上表示有理数a,b,c的三点如图所示,若ac<0,b+a<0,则①
;②b+c<0,③abc<0,其中正确的是________(只填序号).


下列说法中:①1.804(精确到0.01)取近似数是1.80;②若a+b+c=0则
可能的值为0或1或2;③两个三次多项式的和一定是三次多项式;④若a是8的相反数,b比a的相反数小3,则a+b=-13;正确的个数有( )

A.4个 | B.3个 | C.2个 | D.1个 |
江夏区某出租车在某一天以江夏体育馆为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9,-2,-5,-4,-12,+8,+3,-1,-4,+10
(1)将最后一名乘客送到目的地,出租车离江夏体育馆出发点多远?
(2)直接写出该出租车在行驶过程中,离江夏体育馆最远的距离是______.
(3)出租车按物价部门规定,行程不超过3km的(含3km),按起步价8元收费,若行程超过3km的,则超过的部分,每千米加收1.2元,该司机这天的营业额是多少?
(1)将最后一名乘客送到目的地,出租车离江夏体育馆出发点多远?
(2)直接写出该出租车在行驶过程中,离江夏体育馆最远的距离是______.
(3)出租车按物价部门规定,行程不超过3km的(含3km),按起步价8元收费,若行程超过3km的,则超过的部分,每千米加收1.2元,该司机这天的营业额是多少?
观察下列每对数在数轴上的对应点间的距离,3与5,4与﹣2, ﹣4与3, ﹣1与﹣5.并回答下列各题:

(1)数轴上表示4和﹣2两点间的距离是 ;表示﹣1和﹣5两点间的距离是 .
(2)若数轴上的点A表示的数为x,点B表示的数为﹣3.
①数轴上A、B两点间的距离可以表示为 (用含x的代数式表示);
②如果数轴上A、B两点间的距离为|AB|=1,求x的值.
(3)直接写出代数式
的最小值为 .

(1)数轴上表示4和﹣2两点间的距离是 ;表示﹣1和﹣5两点间的距离是 .
(2)若数轴上的点A表示的数为x,点B表示的数为﹣3.
①数轴上A、B两点间的距离可以表示为 (用含x的代数式表示);
②如果数轴上A、B两点间的距离为|AB|=1,求x的值.
(3)直接写出代数式
