- 数与式
- + 有理数
- 正数和负数
- 有理数的初步认识
- 数轴
- 相反数
- 绝对值
- 有理数大小比较
- 有理数的运算
- 实数
- 代数式
- 因式分解
- 分式
- 二次根式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
下表是世界五大洲的最低点及其海拔高度:
根据以上数据,海拔最低的是( ).
世界五大洲 的最低点 | 亚洲 死海 | 欧洲 里海 | 非洲 阿萨尔湖 | 大洋洲 北艾尔湖 | 美洲 死谷海 |
海拔/![]() | -422 | -28 | -153 | -16 | -85 |
根据以上数据,海拔最低的是( ).
A.美洲死谷海 | B.大洋洲北艾尔湖 | C.亚洲死海 | D.非洲阿萨尔湖 |
某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正.减产记为负):
(1)根据记录的数据可知该厂星期四生产自行车多少辆?
(2)产量最多的一天比产量最少的一天多生产自行车多少辆?
(2)根据记录的数据可知该厂本周实际生产自行车多少辆?
(4)该厂实行每周计件工资制,每生产一辆车可得100元,若超额完成任务,则超过部分每辆另奖30元;少生产一辆扣40元,那么该厂工人这一周的工资总额是多少元?
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 七 |
增减 | +5 | -2 | -5 | +9 | -10 | +16 | -9 |
(1)根据记录的数据可知该厂星期四生产自行车多少辆?
(2)产量最多的一天比产量最少的一天多生产自行车多少辆?
(2)根据记录的数据可知该厂本周实际生产自行车多少辆?
(4)该厂实行每周计件工资制,每生产一辆车可得100元,若超额完成任务,则超过部分每辆另奖30元;少生产一辆扣40元,那么该厂工人这一周的工资总额是多少元?
下列各数中:+3 , -2.1 ,
, 9 ,
, -(-8) , 0 ,-|+3| ,负有理数有( )


A.2个 | B.3个 | C.4个 | D.5个 |
小明的爸爸是一名出租车司机,一天下午小明的爸爸以某超市为出发点,在东西方向的公路上运营,记向东为正,向西为负,以先后次序记录如下:(单位km)
+5,﹣3,﹣5,+4,﹣8,+6,﹣4
(1)将最后一名乘客送到目的地时,出租车离出发点有多远?在它的什么方向?
(2)若每千米收费为2元,小明爸爸这个下午的营业额是多少元?
+5,﹣3,﹣5,+4,﹣8,+6,﹣4
(1)将最后一名乘客送到目的地时,出租车离出发点有多远?在它的什么方向?
(2)若每千米收费为2元,小明爸爸这个下午的营业额是多少元?
如图所示,在数轴上有三个点A,B,C,回答下列问题:(注意:本题直接写出答案即可)

(1)A,C两点间的距离是多少?
(2)数轴上存在点D,点D到点A的距离等于点D到点C的距离问点 D对应的数是多少?
(3)若点E与点B的距离是8,则E点表示的数是什么?
(4)若F点与A点的距离是
,请你写出F点表示的数是多少?(用含字母a的式子表示)

(1)A,C两点间的距离是多少?
(2)数轴上存在点D,点D到点A的距离等于点D到点C的距离问点 D对应的数是多少?
(3)若点E与点B的距离是8,则E点表示的数是什么?
(4)若F点与A点的距离是
