- 力学
- 电磁学
- 作用的导体棒在导轨上运动的电动势、安培力、电流、路端电压
- 导体棒进出磁场区域的加速度变化
- + 计算导轨切割磁感线电路中产生的热量
- 求导体棒运动过程中通过其截面的电量
- 根据I-t图象判断导体棒的运动情况
- 导体棒在不受拉力时运动的位移与速度的关系
- 双棒切割磁感线时,符合动量守恒的情况
- 双杆在不等宽导轨上运动问题
- 热学
- 光学
- 近代物理
- 其他
- 初中衔接知识点
- 竞赛
当下世界科技大国都在研发一种新技术,实现火箭回收利用,有效节约太空飞行成本,其中有一技术难题是回收时如何减缓对地的碰撞,为此设计师在返回火箭的底盘安装了4台电磁缓冲装置,其工作原理是利用电磁阻尼作用减缓火箭对地的冲击力。该装置的主要部件有两部分:①缓冲滑块,由高强绝缘材料制成,其内部边缘绕有闭合单匝矩形线圈abcd,指示灯连接在cd两处;②火箭主体,包括绝缘光滑缓冲轨道MN、PQ和超导线圈(图中未画出),超导线圈能产生方向垂直于整个缓冲轨道平面的匀强磁场。当缓冲滑块接触地面时,滑块立即停止运动,此后线圈与火箭主体中的磁场相互作用,指示灯发光,火箭主体一直做减速运动直至达到软着陆要求的速度,从而实现缓冲。现已知缓冲滑块竖直向下撞向地面时,火箭主体的速度大小为v0,软着陆要求的速度为0;指示灯、线圈的ab边和cd边电阻均为R,其余电阻忽略不计;ab边长为L,火箭主体质量为m,匀强磁场的磁感应强度大小为B,重力加速度为g,一切摩擦阻力不计。
(1)求缓冲滑块刚停止运动时,线圈的ab边受到的安培力大小;
(2)求缓冲滑块刚停止运动时,火箭主体的加速度大小;
(3)若火箭主体的速度大小从v0减到0的过程中,经历的时间为t,求该过程中每台电磁缓冲装置中线圈产生的焦耳热。
(1)求缓冲滑块刚停止运动时,线圈的ab边受到的安培力大小;
(2)求缓冲滑块刚停止运动时,火箭主体的加速度大小;
(3)若火箭主体的速度大小从v0减到0的过程中,经历的时间为t,求该过程中每台电磁缓冲装置中线圈产生的焦耳热。

一空间有垂直纸面向里的匀强磁场B,两条电阻不计的平行光滑导轨竖直放置在磁场内,如图所示,磁感应强度B=0.5 T,导体棒ab、cd长度均为0.2 m,电阻均为0.1 Ω,重力均为0.1 N,现用力向上拉动导体棒ab,使之匀速上升(导体棒ab、cd与导轨接触良好),此时cd静止不动,则ab上升时,下列说法正确的是( )


A.ab受到的拉力大小为2 N |
B.ab向上运动的速度为2 m/s |
C.在2 s内,拉力做功,有0.4 J的机械能转化为电能 |
D.在2 s内,拉力做功为0.6 J |
两根相距为
的足够长的金属直角导轨如图所示放置,它们各有一边在同一水平面内,另一边垂直于水平面。质量均为
的金属细杆
、
与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数均为
,每根杆的电阻均为
,导轨电阻不计。整个装置处于磁感应强度大小为
,方向竖直向上的匀强磁场中。当
杆在平行于水平导轨的拉力
作用下以速度
沿水平方向的导轨向右匀速运动时,
杆正以速度
沿竖直方向的导轨向下匀速运动,重力加速度为
。则以下说法正确的是( )















A.![]() ![]() ![]() |
B.![]() ![]() ![]() |
C.![]() ![]() ![]() |
D.![]() ![]() ![]() |
如图所示,间距为L的平行金属轨道MN、PQ均固定在竖直平面内,两轨道均由水平光滑直轨道和半径为r的四分之一光滑圆弧轨道组成,圆弧轨道的最低点切线水平,水平轨道有一部分处在竖直向上的匀强磁场中,磁场的边界垂直于轨道,磁场边界间距也为L,轨道N、Q端接有阻值为R的定值电阻,磁场右侧轨道上固定有弹性立柱,两立柱连线与轨道垂直,一个质量为m的金属棒从轨道的M、P端由静止释放,金属棒穿过磁场后,与金属立柱碰撞无能量损失,此后,金属棒刚好能再次穿过磁场,金属棒和轨道电阻均不计,重力加速度为g,求
(1)金属棒到达圆弧轨道最低点时对轨道的压力大小;
(2)金属棒第一次穿过磁场的过程中,通过电阻R的电量的大小;
(3)金属棒第一次穿过磁场的过程中,电阻R产生的焦耳热。
(1)金属棒到达圆弧轨道最低点时对轨道的压力大小;
(2)金属棒第一次穿过磁场的过程中,通过电阻R的电量的大小;
(3)金属棒第一次穿过磁场的过程中,电阻R产生的焦耳热。

如图所示,光滑平行导轨倾斜放置,导轨平面倾角为θ=30°,导轨间距为L,导轨上端接有阻值为R的定值电阻,整个装置处在垂直导轨平面向上的匀强磁场中,磁场的磁感应强度大小为B,一根金属棒放在导轨上,由静止释放,同时给金属棒施加一个沿导轨平面向下的拉力,使金属棒以大小为a=0.5g的加速度向下做匀加速运动,g为重力加速度,金属棒运动过程中始终与导轨垂直并接触良好,不计导轨和金属棒的电阻,金属棒运动t时间时,金属棒两端的电压U、t时间内通过电阻R的电量q、拉力做功的瞬时功率P、电阻R产生的焦耳热Q随时间变化正确的是( )


A.![]() | B.![]() |
C.![]() | D.![]() |
磁悬浮列车的运动原理如图所示,在水平面上有两根水平长直平行导轨,导轨间有与导轨面垂直且方向相反的匀强磁场B1和B2,B1和B2相互间隔,导轨上有金属框abcd。当磁场B1和B2同时以恒定速度沿导轨向右匀速运动时,金属框也会由静止开始沿导轨向右运动。已知两导轨间距L1=0. 4 m,两种磁场的宽度均为L2,L2=ab,B1=B2=1.0T。金属框的质量m=0.1kg,电阻R=2.0Ω。金属框受到的阻力与其速度成正比,即f=kv,k=0.08 kg/s,只考虑动生电动势。求:
(1)开始时金属框处于图示位置,判断此时金属框中感应电流的方向;
(2)若磁场的运动速度始终为v0=10m/s,在线框加速的过程中,某时刻线框速度v1=7m/s,求此时线框的加速度a1的大小;
(3)若磁场的运动速度始终为v0=10m/s,求金属框的最大速度v2为多大?此时装置消耗的总功率为多大?
(1)开始时金属框处于图示位置,判断此时金属框中感应电流的方向;
(2)若磁场的运动速度始终为v0=10m/s,在线框加速的过程中,某时刻线框速度v1=7m/s,求此时线框的加速度a1的大小;
(3)若磁场的运动速度始终为v0=10m/s,求金属框的最大速度v2为多大?此时装置消耗的总功率为多大?

如图所示,两条电阻不计的平行导轨与水平面成
角,导轨的一端连接定值电阻R1,匀强磁场垂直穿过导轨平面,一根质量为m、电阻为R2的导体棒ab,垂直导轨放置,导体棒与导轨之间的动摩擦因数为
,且
,如果导体棒以速度v匀速下滑,导体棒此时受到的安培力大小为F,则以下判断正确的是( )





A.电阻R1消耗的电功率为![]() |
B.重力做功的功率为![]() |
C.运动过程中减少的机械能全部转化为电能 |
D.R2上消耗的功率为![]() |
如图所示,一粗糙平行金属轨道平面与水平面成θ角,两导轨上端用一电阻R相连,该装置处于匀强磁场中,磁场方向垂直轨道平面向上.质量为m的金属杆ab,以初速度v0从轨道底端向上滑行,滑行到某一高度h后又返回到底端.若运动过程中金属杆始终保持与导轨垂直且接触良好,轨道与金属杆的电阻均忽略不计,则下列说法正确的是()


A.上滑过程的时间比下滑过程短 |
B.上滑过程通过电阻R的电量比下滑过程多 |
C.上滑过程通过电阻R产生的热量比下滑过程少 |
D.在整个过程中损失的机械能等于装置产生的热量 |