- 力学
- 功
- 功率
- + 动能与动能定理
- 动能
- 动能定理
- 动能定理的综合应用
- 实验:探究功与物体速度变化的关系
- 实验:探究动能定理
- 用现代方法验证动能定理
- 重力势能和弹性势能
- 机械能守恒定律
- 能量守恒定律
- 电磁学
- 热学
- 光学
- 近代物理
- 其他
- 初中衔接知识点
- 竞赛
一小物块沿斜面向上滑动,然后滑回到原处.物块初动能为Ek0,与斜面间的动摩擦因数不变,则该过程中,物块的动能Ek与位移x关系的图线是( )
A.![]() | B.![]() | C.![]() | D.![]() |
某小组同学用简易装置探究功与能量之间的关系,他们找来一块平整且比较光滑的木板,从实验室借来打点计时器、刻度尺、小车和纸带。他们把木板搭在台阶上。如图甲安装好实验器材,得到如图乙所示的一条纸带。

(1)在探究过程中,需要测量台阶的高度h和木板的长度L,已知纸带上相邻两计数点之间的时间间隔为T,根据纸带数据利用MN两点,该组同学需要探究的表达式为______(用题中所给物理量的字母表示)。
(2)在该实验中下列说法正确的是_____

(1)在探究过程中,需要测量台阶的高度h和木板的长度L,已知纸带上相邻两计数点之间的时间间隔为T,根据纸带数据利用MN两点,该组同学需要探究的表达式为______(用题中所给物理量的字母表示)。
(2)在该实验中下列说法正确的是_____
A.该实验中先接通电源,后释放小车 |
B.由于摩擦力对实验结果有影响,所以把木板搭在台阶上是为了平衡摩擦力 |
C.由于阻力的存在,该实验中小车增加的动能一定小于小车重力做的功 |
D.在该实验中还需要用天平测量小车的质量 |
某实验小组采用如图所示的装置探究功与速度变化的关系,小车在橡皮筋的作用下弹出后,沿木板滑行。打点计时器的工作频率为50 Hz。
(1)关于橡皮筋做功,两位同学提出了不同的说法,你认为正确的是______;

A.橡皮筋对小车做功的大小可以直接测量
B.通过增加橡皮筋的条数可以使橡皮筋对小车做的功成整数倍增加
C.橡皮筋在小车运动的全程中始终做功
D.把橡皮筋拉伸为原来的两倍,橡皮筋做功也增加为原来的两倍
(2)根据多次测量数据,甲同学作出了功和速度的关系图线,即W-v图;乙同学作出了功与速度平方的关系图线,即
图,如图所示。由图线两同学均得出“功与速度的平方一定成正比”的结论。关于甲、乙两位同学的分析,你的评价是(________)

A.甲的分析不正确,乙的分析正确 B.甲的分析正确,乙的分析不正确 C.甲和乙的分析都正确 D.甲和乙的分析都不正确
(1)关于橡皮筋做功,两位同学提出了不同的说法,你认为正确的是______;

A.橡皮筋对小车做功的大小可以直接测量
B.通过增加橡皮筋的条数可以使橡皮筋对小车做的功成整数倍增加
C.橡皮筋在小车运动的全程中始终做功
D.把橡皮筋拉伸为原来的两倍,橡皮筋做功也增加为原来的两倍
(2)根据多次测量数据,甲同学作出了功和速度的关系图线,即W-v图;乙同学作出了功与速度平方的关系图线,即


A.甲的分析不正确,乙的分析正确 B.甲的分析正确,乙的分析不正确 C.甲和乙的分析都正确 D.甲和乙的分析都不正确
如图所示,质量均为m的木块A和B,用一个劲度系数为k的竖直轻质弹簧连接,最初系统静止,现在用力F缓慢拉A直到B刚好离开地面,则这一过程中力F做的功至少为( )


A.![]() | B.![]() |
C.![]() | D.![]() |
如图所示,光滑圆弧的半径为80cm,一质量为1.0kg的物体由A处从静止开始下滑到B点,然后又沿水平面前进3m,到达C点停止。物体经过B点时无机械能损失,g取10m/s2,求:
(1)物体到达B点时的速度以及在B点时对轨道的压力;
(2)物体在BC段上的动摩擦因数;
(3)整个过程中因摩擦而产生的热量。
(1)物体到达B点时的速度以及在B点时对轨道的压力;
(2)物体在BC段上的动摩擦因数;
(3)整个过程中因摩擦而产生的热量。

如图所示,利用倾角为
的传送带把一个质量为m的木箱匀速传送L距离,这时木箱升高h,木箱和传送带始终保持相对静止。关于此过程,下列说法正确的是( )



A.木箱克服摩擦力做功mgh |
B.摩擦力对木箱做功为零 |
C.摩擦力对木箱做功为![]() ![]() |
D.摩擦力对木箱做功为mgh |
如图所示,小球从A点以初速度v0沿粗糙斜面向上运动,到达最高点B后返回A,C为AB的中点。下列说法中正确的是( )


A.小球从A出发到返回A的过程中,位移为零,外力做功为零 |
B.小球从A到C与从C到B的过程,减少的动能相等 |
C.小球从A到C与从C到B的过程,速度的变化相等 |
D.小球从A到C与从C到B的过程,损失的机械能相等 |
小明同学将“打夯”的情境简化成如图所示的过程:放置于水平地面的平底重物,两人同时通过绳子对重物各施加一个拉力,拉力大小均为
,方向均与竖直方向成
,两人同时作用t=0.4s后停止施力。一段时间后重物落下,重物砸入地面之下的距离s=4cm。已知重物的质量为m=48kg,所受空气阻力忽略不计,重力加速度取
,
。求:
(1)重物上升的时间;
(2)重物砸入地面的过程中,重物对地面的平均冲击力大小。




(1)重物上升的时间;
(2)重物砸入地面的过程中,重物对地面的平均冲击力大小。

如图所示,光滑轨道OABC是由水平直轨道OB与一段半径R=62.5m的圆弧BC在B点相切而成。m=1kg的物块P在F=20N的水平推力作用下,紧靠在固定于墙面的轻弹簧右侧A处保持静止,A点与B点相距
=16m。己知物块可视为质点,弹簧的劲度系数
。取重力加速度g=10m/s2,cos5°=0.996。现突然撤去力F,求:
(1)物块P第一次向右运动的过程中,弹簧对物块的冲量大小;
(2)从物块P离开弹簧到再次接触弹簧经过的时间。(结果保留两位小数)


(1)物块P第一次向右运动的过程中,弹簧对物块的冲量大小;
(2)从物块P离开弹簧到再次接触弹簧经过的时间。(结果保留两位小数)

如图甲,轻弹簧一端固定在地面上,在弹簧上端轻轻放上质量为M的物块,物块的振幅为A。现把该轻弹簧放在光滑水平轨道上,左端固定,右端连接质量为
的竖直挡板,处于原长时挡板位于轨道上的B点。水平轨道的右侧与倾角为37°的斜面在D点平滑连接,斜面与圆轨道相切于E点,斜面长度x和圆轨道的半径R相等,
A,OF、OG分别是圆轨道的水平半径和竖直半径,B、C、D、E、F、G均在同一竖在面内,斜面和圆弧轨道均是粗糙的。用物块M通过挡板压缩弹簧到C点,使BC=2A,从静止释放,M与挡板分离后冲上斜面,恰好能运动到G点。物块在圆弧上EF、FG两段上克服摩擦力做的功相等,在F点时对轨道的压力
=3.2Mg,已知sin37°=0.6,co37°=0.8,重力加速度为g,求:

(1)甲图中弹簧的最大弹性势能;
(2)物块与挡板脱离时的速度大小;
(3)物块在圆弧FG段上克服摩擦力做的功;
(4)物块与斜面之间的动摩擦因数。




(1)甲图中弹簧的最大弹性势能;
(2)物块与挡板脱离时的速度大小;
(3)物块在圆弧FG段上克服摩擦力做的功;
(4)物块与斜面之间的动摩擦因数。