1.单选题- (共4题)
2.
给出下列命题:
①非零向量
满足
,则
和
的夹角为30°;
②将函数
的图像按向量
平移,得到函数
的图像;
③在三角形ABC中,若
,则三角形ABC为等腰三角形;其中正确命题的个数是( )
①非零向量




②将函数



③在三角形ABC中,若

A.0 | B.1 | C.2 | D.3 |
2.填空题- (共10题)
3.解答题- (共5题)
15.
在平面直角坐标系中,O为原点,两个点列
和
满足:①
;②
(1)求点
和
的坐标;
(2)求向量
的坐标;
(3)对于正整数k,用
表示无穷数列
中从第k+1项开始的各项之和,用
表示无穷数列
中从第k项开始的各项之和,即
,
若存在正整数k和p,使得
,求k,p的值.




(1)求点


(2)求向量

(3)对于正整数k,用







16.
类似于平面直角坐标系,我们可以定义平面斜坐标系:设数轴
的交点为
,与
轴正方向同向的单位向量分别是
,且
与
的夹角为
,其中
.由平面向量基本定理,对于平面内的向量
,存在唯一有序实数对
,使得
,把
叫做点
在斜坐标系
中的坐标,也叫做向量
在斜坐标系
中的坐标.在平面斜坐标系内,直线的方向向量、法向量、点方向式方程、一般式方程等概念与平面直角坐标系内相应概念以相同方式定义,如
时,方程
表示斜坐标系内一条过点(2,1),且方向向量为(4,-5)的直线.
(1)若
,
,且
与
的夹角为锐角,求实数m的取值范围;
(2)若
,已知点
和直线
①求l的一个法向量;②求点A到直线l的距离.


















(1)若




(2)若



17.
已知点P和非零实数
,若两条不同的直线
均过点P,且斜率之积为
,则称直线
是一组“
共轭线对”,如直
是一组“
共轭线对”,其中O是坐标原点.

(1)已知
是一组“
共轭线对”,求
的夹角的最小值;
(2)已知点A(0,1)、点
和点C(1,0)分别是三条直线PQ,QR,RP上的点(A,B,C与P,Q,R均不重合),且直线PR,PQ是“
共轭线对”,直线QP,QR是“
共轭线对”,直线RP,RQ是“
共轭线对”,求点P的坐标;
(3)已知点
,直线
是“
共轭线对”,当
的斜率变化时,求原点O到直线
的距离之积的取值范围.








(1)已知



(2)已知点A(0,1)、点




(3)已知点





试卷分析
-
【1】题量占比
单选题:(4道)
填空题:(10道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:19