1.单选题- (共10题)
6.
设α,β是两个不同的平面,l是一条直线,给出下列说法:
①若l⊥α,α⊥β,则l∥β; ②若l∥α,α∥β,则l∥β;
③若l⊥α,α∥β,则l⊥β ; ④若l∥α,α⊥β,则l⊥β.
其中说法正确的个数为( )
①若l⊥α,α⊥β,则l∥β; ②若l∥α,α∥β,则l∥β;
③若l⊥α,α∥β,则l⊥β ; ④若l∥α,α⊥β,则l⊥β.
其中说法正确的个数为( )
A.3 | B.2 | C.1 | D.0 |
9.
某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布
,且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为( )



A.![]() | B.![]() | C.![]() | D.![]() |
10.
对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )


A.46,45,56 | B.46,45,53 |
C.47,45,56 | D.45,47,53 |
2.选择题- (共5题)
15.
提出问题:如图1,将三角板放在正方形ABCD上,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交边DC与点E,求证:PB=PE
分析问题:学生甲:如图1,过点P作PM⊥BC,PN⊥CD,垂足分别为M,N通过证明两三角形全等,进而证明两条线段相等.
学生乙:连接DP,如图2,很容易证明PD=PB,然后再通过“等角对等边”证明PE=PD,就可以证明PB=PE了.
解决问题:请你选择上述一种方法给予证明.
问题延伸:如图3,移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交DC的延长线于点E,PB=PE还成立吗?若成立,请证明;若不成立,请说明理由.
3.填空题- (共4题)
4.解答题- (共4题)
20.
某超市要将甲、乙两种大小不同的袋装大米分装成A、B两种规格的小袋. 每袋大米可同时分得A、B两种规格的小袋大米的袋数如下表所示:


已知库房中现有甲、乙两种袋装大米的数量分别为5袋和10袋,市场急需A、B两种规格的成品数分别为15袋和27袋.
(Ⅰ)问分甲、乙两种袋装大米各多少袋可得到所需A、B两种规格的成品数,且使所用的甲、乙两种袋装大米的袋数最少?(要求画出可行域)
(Ⅱ)若在可行域的整点中任意取出一解,求其恰好为最优解的概率.
21.
(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB="A" A1,∠BA A1=60°.

(Ⅰ)证明AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C 与平面BB1C1C所成角的正弦值。

(Ⅰ)证明AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C 与平面BB1C1C所成角的正弦值。
22.
电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查。下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;

将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”。
(Ⅰ)根据已知条件完成下面的
列联表,并据此资料你是否认为“体育迷”与性别
有关?

(Ⅱ)将上述调查所得到的频率视为概率。现在从该地区大量电视观众中,采用随机抽
样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X。若每次抽取的结果是相互独立的,求X的分布列,期望
和方差
。
附:


将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”。
(Ⅰ)根据已知条件完成下面的

有关?

(Ⅱ)将上述调查所得到的频率视为概率。现在从该地区大量电视观众中,采用随机抽
样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X。若每次抽取的结果是相互独立的,求X的分布列,期望


附:


试卷分析
-
【1】题量占比
单选题:(10道)
选择题:(5道)
填空题:(4道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:18