1.单选题- (共7题)
6.
小明家的晚报在下午
任何一个时间随机地被送到,他们一家人在下午
任何一个时间随机地开始晚餐.为了计算晚报在晚餐开始之前被送到的概率,某小组借助随机数表的模拟方法来计算概率,他们的具体做法是将每个1分钟的时间段看作个体进行编号,
编号为01,
编号为02,依此类推,
编号为90.在随机数表中每次选取一个四位数,前两位表示晚报时间,后两位表示晚餐时间,如果读取的四位数表示的晚报晚餐时间有一个不符合实际意义,视为这次读取的无效数据(例如下表中的第一个四位数7840中的78不符合晚报时间).按照从左向右,读完第一行,再从左向右读第二行的顺序,读完下表,用频率估计晚报在晚餐开始之前被送到的概率为








7840 1160 5054 3139 8082 7732 5034 3682 4829 4052 |
4201 6277 5678 5188 6854 0200 8650 7584 0136 7655 |
A.![]() | B.![]() | C.![]() | D.![]() |
2.选择题- (共1题)
3.填空题- (共2题)
10.
“韩信点兵”问题在我国古代数学史上有不少有趣的名称,如“物不知数”“鬼谷算”“隔墙算”“大衍求一术”等,其中《孙子算经》中“物不知数”问题的解法直至1852年传由传教士传入至欧洲,后验证符合由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”. 原文如下:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”这是一个已知某数被3除余2,被5除余3,被7除余2,求此数的问题.现将1至2017这2017个数中满足条件的数按由小到大的顺序排成一列数,则中位数为__________.
4.解答题- (共4题)
12.
如图,三棱柱
中,
平面
,
,
,点
在线段
上,且
,
.

(1)试用空间向量证明直线
与平面
不平行;
(2)设平面
与平面
所成的锐二面角为
,若
,求
的长;
(3)在(2)的条件下,设平面
平面
,求直线
与平面
的所成角.










(1)试用空间向量证明直线


(2)设平面





(3)在(2)的条件下,设平面




13.
某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).

(1)A类工人中和B类工人中各抽查多少工人?
(2)从A类工人中的抽查结果和从B类工人中的抽查结果分别如下表1和表2.
表一
表二
①先确定
再补全下列频率分布直方图(用阴影部分表示).
②就生产能力而言,
类工人中个体间的差异程度与
类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)
③分别估计
类工人生产能力的平均数和中位数(求平均数时同一组中的数据用该组区间的中点值作代表).

(1)A类工人中和B类工人中各抽查多少工人?
(2)从A类工人中的抽查结果和从B类工人中的抽查结果分别如下表1和表2.
表一
生产能力分组 | [100,110) | [110,120) | [120,130) | [130,140) | [140,150) |
人数 | 4 | 8 | ![]() | 5 | 3 |
表二
生产能力分组 | [110,120) | [120,130) | [130,140) | [140,150) |
人数 | 6 | ![]() | 36 | 18 |
①先确定

②就生产能力而言,


③分别估计

试卷分析
-
【1】题量占比
单选题:(7道)
选择题:(1道)
填空题:(2道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:13