1.单选题- (共10题)
3.
已知函数f(x)的定义域为R,f(﹣2)=2021,对任意x∈(﹣∞,+∞),都有f'(x)<2x成立,则不等式f(x)>x2+2017的解集为
A.(﹣2,+∞) | B.(﹣2,2) | C.(﹣∞,﹣2) | D.(﹣∞,+∞) |
9.
对四组数据进行统计,获得如图所示的散点图,关于其相关系数的比较,正确的是( )


A.r2<r4<0<r3<r1 | B.r4<r2<0<r1<r3 |
C.r4<r2<0<r3<r1 | D.r2<r4<0<r1<r3 |
2.选择题- (共1题)
11.传送带以恒定速度v=4m/s顺时针运行,传送带与水平面的夹角θ=37°.现将质量m=2kg的小物品轻放在其底端(小物品可看成质点),平台上的人通过一根轻绳用恒力F=20N拉小物品,经过一段时间物品被拉到离地高为H=1.8m的平台上,如图所示.已知物品与传送带这间的动摩擦因数μ=0.5,设最大静摩擦力等于滑动摩擦力,g取10m/s2,已知sin37°=0.6,cos37°=0.8.求:
①物品从传送带底端运动到平台上所用的时间是多少?
②若在物品与传送带达到同速瞬间撤去恒力F,求物品还需多少时间离开皮带?
3.填空题- (共4题)
4.解答题- (共5题)
16.
已知函数
在
上是减函数,在
上是增函数,函数
在
上有三个零点.
,试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由.





(1)求的值;
(2)若1是其中一个零点,求的取值范围;

19.
已知椭圆
:
过点
,
为椭圆的半焦距,且
,过点
作两条互相垂直的直线
,
与椭圆
分别交于另两点
,
.
(1)求椭圆
的方程;
(2)若直线
的斜率为
,求
的面积;
(3)若线段
的中点在
轴上,求直线
的方程.











(1)求椭圆

(2)若直线



(3)若线段



20.
为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:
将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.
(1)根据已知条件完成下面的2×2列联表,并据此资料我们能否有95%的把握认为“歌迷”与性别有关?
(2)将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率.
附:K2=
,n=a+b+c+d.
场数 | 9 | 10 | 11 | 12 | 13 | 14 |
人数 | 10 | 18 | 22 | 25 | 20 | 5 |
将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.
(1)根据已知条件完成下面的2×2列联表,并据此资料我们能否有95%的把握认为“歌迷”与性别有关?
| 非歌迷 | 歌迷 | 合计 |
男 | | | |
女 | | | |
合计 | | | |
(2)将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率.
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
附:K2=

试卷分析
-
【1】题量占比
单选题:(10道)
选择题:(1道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:19