1.单选题- (共11题)
9.
“勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角
,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是( )



A.![]() | B.![]() | C.![]() | D.![]() |
2.填空题- (共4题)
13.
将函数f(x)=cos2x图象向左平移
(0<
<
)个单位后得到函数g(x)的图象,若函数g(x)在区间[-
,
]上单调递减,且函数g(x)的最大负零点在区间(-
,0)上,则
的取值范围______ .







3.解答题- (共6题)
20.
已知动点P到点F(0,1)的距离比它到直线y=-3的距离少2.
(1)求点P的轨迹E的方程.
(2)过点F的两直线l1、l2分别与轨迹E交于A,B两点和C,D两点,且满足
•
=0,设M,N两点分别是线段AB,CD的中点,问直线MN是否恒过一定点,若经过,求定点的坐标;若不经过,请说明理由.
(1)求点P的轨迹E的方程.
(2)过点F的两直线l1、l2分别与轨迹E交于A,B两点和C,D两点,且满足


21.
大学生赵敏利用寒假参加社会实践,对机械销售公司7月份至12月份销售某种机械配件的销售量及销售单价进行了调查,销售单价x和销售量y之间的一组数据如表所示:
(1)根据7至11月份的数据,求出y关于x的回归直线方程;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?
(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).
参考公式:回归直线方程
,其中
,参考数据:
.
月份i | 7 | 8 | 9 | 10 | 11 | 12 |
销售单价xi(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
销售量yi(件) | 11 | 10 | 8 | 6 | 5 | 14 |
(1)根据7至11月份的数据,求出y关于x的回归直线方程;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?
(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).
参考公式:回归直线方程



试卷分析
-
【1】题量占比
单选题:(11道)
填空题:(4道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:21