1.单选题- (共7题)
2.填空题- (共4题)
9.
一半径为
的水轮,水轮圆心
距离水面2
,已知水轮每分钟转动(按逆时针方向)3圈,当水轮上点
从水中浮现时开始计时,即从图中点
开始计算时间.

(1)当
秒时点
离水面的高度_________ ;
(2)将点
距离水面的高度
(单位:
)表示为时间
(单位:
)的函数,则此函数表达式为_______________ .






(1)当


(2)将点





3.解答题- (共6题)
14.
如图,已知椭圆
,
分别为其左、右焦点,过
的直线与此椭圆相交于
两点,且
的周长为8,椭圆
的离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)在平面直角坐标系
中,已知点
与点
,过
的动直线
(不与
轴平行)与椭圆相交于
两点,点
是点
关于
轴的对称点.求证:
(i)
三点共线.
(ii)
.







(Ⅰ)求椭圆

(Ⅱ)在平面直角坐标系










(i)

(ii)


16.
在四棱锥
中,底面
是边长为6的菱形,且
,
,
是棱
上的一动点,
为
的中点.

(1)求此三棱锥
的体积;
(2)求证:平面
(3)若
,侧面
内是否存在过点
的一条直线,使得直线上任一点
都有
平面
,若存在,给出证明,若不存在,请明理由.










(1)求此三棱锥

(2)求证:平面

(3)若






17.
在某区“创文明城区”(简称“创城”)活动中,教委对本区
四所高中学校按各校人数分层抽样,随机抽查了100人,将调查情况进行整理后制成下表:
(注:参与率是指:一所学校“创城”活动中参与的人数与被抽查人数的比值)假设每名高中学生是否参与”创城”活动是相互独立的.
(1)若该区共2000名高中学生,估计
学校参与“创城”活动的人数;
(2)在随机抽查的100名高中学生中,随机抽取1名学生,求恰好该生没有参与“创城”活动的概率;
(3)在上表中从
两校没有参与“创城”活动的同学中随机抽取2人,求恰好
两校各有1人没有参与“创城”活动的概率是多少?

学校 | ![]() | ![]() | ![]() | ![]() |
抽查人数 | 50 | 15 | 10 | 25 |
“创城”活动中参与的人数 | 40 | 10 | 9 | 15 |
(注:参与率是指:一所学校“创城”活动中参与的人数与被抽查人数的比值)假设每名高中学生是否参与”创城”活动是相互独立的.
(1)若该区共2000名高中学生,估计

(2)在随机抽查的100名高中学生中,随机抽取1名学生,求恰好该生没有参与“创城”活动的概率;
(3)在上表中从


试卷分析
-
【1】题量占比
单选题:(7道)
填空题:(4道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:17