1.单选题- (共8题)
4.
下列命题中,是真命题的是( )
A.长分别为32,42,52的线段组成的三角形是直角三角形 |
B.连接对角线垂直的四边形各边中点所得的四边形是矩形 |
C.一组对边平行且另一组对边相等的四边形是平行四边形 |
D.对角线垂直且相等的四边形是正方形 |
8.
如图,所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是( )


A.体育场离张强家3.5千米 ![]() | B.张强在体育场锻炼了15分钟 |
C.体育场离早餐店1.5千米 ![]() | D.张强从早餐店回家的平均速度是3千米/小时 |
2.选择题- (共2题)
3.填空题- (共7题)
11.
一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③关于x的方程kx﹣x=a﹣b的解是x=3;④当x<3时,y1<y2中.则正确的序号有________.

16.
如图,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间________ 秒时,以点P,Q,E,D为顶点的四边形是平行四边形.

17.
如图(1),已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2(如图(2));正方形A2B2C2D2的面积为________ ,以此下去…,则正方形AnBnCnDn的面积为________ . 

4.解答题- (共5题)
19.
某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.
(1)甲、乙两种材料每千克分别是多少元?
(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?
(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案.
(1)甲、乙两种材料每千克分别是多少元?
(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?
(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案.
20.
如图,直线
与x轴交于点A,与y轴交于B,点P是x轴上的一个动点.
(1)求A、B两点的坐标;
(2)当点P在x轴正半轴上,且△APB的面积为8时,求直线PB的解析式;
(3)点Q在第二象限,是否存在以A、B、P、Q为顶点的四边形是菱形?若存在,请求出点Q的坐标,若不存在,请说明理由.

(1)求A、B两点的坐标;
(2)当点P在x轴正半轴上,且△APB的面积为8时,求直线PB的解析式;
(3)点Q在第二象限,是否存在以A、B、P、Q为顶点的四边形是菱形?若存在,请求出点Q的坐标,若不存在,请说明理由.

21.
如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,分别按下列要求画以格点为顶点三角形和平行四边形.
(1)三角形三边长为4,3
,
;
(2)平行四边形有一锐角为45°,且面积为6.
(1)三角形三边长为4,3


(2)平行四边形有一锐角为45°,且面积为6.

试卷分析
-
【1】题量占比
单选题:(8道)
选择题:(2道)
填空题:(7道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:8
7星难题:0
8星难题:3
9星难题:8