1.单选题- (共3题)
2.
已知命题1+2+22+…+2n-1=2n-1及其证明:
(1)当n=1时,左边=1,右边=21-1=1,所以等式成立;
(2)假设n=k时等式成立,即1+2+22+…+2k-1=2k-1成立,则当n=k+1时,1+2+22+…+2k-1+2k=
=2k+1-1,所以n=k+1时等式也成立.
由(1)(2)知,对任意的正整数n等式都成立.
判断以上评述( )
(1)当n=1时,左边=1,右边=21-1=1,所以等式成立;
(2)假设n=k时等式成立,即1+2+22+…+2k-1=2k-1成立,则当n=k+1时,1+2+22+…+2k-1+2k=

由(1)(2)知,对任意的正整数n等式都成立.
判断以上评述( )
A.命题、推理都正确 | B.命题正确、推理不正确 |
C.命题不正确、推理正确 | D.命题、推理都不正确 |
2.填空题- (共1题)
试卷分析
-
【1】题量占比
单选题:(3道)
填空题:(1道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:4