1.单选题- (共9题)
个样本进行检测,将所有200辆客车依次编号为1,2,…,200,则其中抽取的4辆客车的
编号可能是
A.3,23,63,102 | B.31,61,87,127 |
C.103,133,153,193 | D.57,68,98,108 |
若正偶数由小到大依次排列构成一个数列,则称该数列为“正偶数列”,且“正偶数列”有一个有趣的现象:
①2+4=6;
②8+10+12=14+16;
③18+20+22+24=26+28+30;
……
按照这样的规律,则2 018所在等式的序号为( )
A.29 | B.30 |
C.31 | D.32 |
秦九韶算法是南宋时期数学家秦九韶提出的一种多项式简化算法,即使在现代,它依然是利用计算机解决多项式问题的最优算法,其算法的程序框图如图所示,若输入的a0,a1,a2,…,an分别为0,1,2,…,n.若n=5,根据该算法计算当x=2时多项式的值,则输出的结果为( )
A.248 | B.258 | C.268 | D.278 |
2.选择题- (共2题)
3.填空题- (共3题)
一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.
将日销量落入各组的频率视为概率,并假设每天的销售量相互独立.X表示在未来3天内日销售量不低于100个的天数,则E(X)=________,方差D(X)=________.
所有真约数(除本身之外的正约数)的和等于它本身的正整数叫做完全数(也称为完备数、完美数).如:6=1+2+3;28=1+2+4+7+14;496=1+2+4+8+16+31+62+124+248.此外,它们都可以表示为2的一些连续正整数次幂之和.如6=21+22,28=22+23+24,…,按此规律,8 128可表示为________.
4.解答题- (共5题)
(I)求接受甲种心理暗示的志愿者中包含A1但不包含

(II)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.

(1)根据茎叶图,计算甲班被抽取学生成绩的平均值


(2)若规定成绩不低于90分的等级为优秀,现从甲、乙两个班级所抽取成绩等级为优秀的学生中,随机抽取2人,求这两个人恰好都来自甲班的概率.
已知某学校的特长班有50名学生,其中有体育生20名,艺术生30名,在学校组织的一次体检中,该班所有学生进行了心率测试,心率全部介于50次/分到75次/分之间,现将数据分成五组,第一组[50,55),第二组[55,60),…,第五组[70,75],按上述分组方法得到的频率分布直方图如图所示.因为学习专业的原因,体育生常年进行系统的身体锻炼,艺术生则很少进行系统的身体锻炼,若前两组的学生中体育生有8名.
(1)根据频率分布直方图及题设数据完成下列2×2列联表.
| 心率小于60次/分 | 心率不小于60次/分 | 合计 |
体育生 |
|
| 20 |
艺术生 |
|
| 30 |
合计50 |
|
|
|
(2)根据(1)中表格数据计算可知,________(填“有”或“没有”)99.5%的把握认为“心率小于60次/分与常年进行系统的身体锻炼有关”.
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
某煤炭公司销售人员根据该公司以往的销售情况,得到如下频率分布表
日销售量分组 | [2,4) | [4,6) | [6,8) | [8,10) | [10,12] |
频率 | 0.10 | 0.20 | 0.30 | 0.25 | 0.15 |
(1)在下图中作出这些数据的频率分布直方图;
(2)将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.若未来3天内日销售量不低于6吨的天数为X,求X的分布列、数学期望与方差.
-
【1】题量占比
单选题:(9道)
选择题:(2道)
填空题:(3道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:17