1.单选题- (共12题)
12.
2017年1月我市某校高三年级1600名学生参加了2017届全市高三期末联考,已知数学考试成绩
(试卷满分150分).统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的
,则此次期末联考中成绩不低于120分的学生人数约为


A.120 | B.160 | C.200 | D.240 |
2.填空题- (共4题)
3.解答题- (共5题)
19.
函数f(x)对任意的m,n∈R都有f(m+n)=f(m)+f(n)-1,并且x>0时,恒有f(x)>1.
(1)求证:f(x)在R上是增函数;
(2)若f(3)=4,解不等式f(a2+a-5)<2
(1)求证:f(x)在R上是增函数;
(2)若f(3)=4,解不等式f(a2+a-5)<2
20.
“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,
市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,检测结果如频率分布直方图所示.

(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数
(同一组中数据用该组区间的中点值作代表);
(2)①由直方图可以认为,速冻水饺的该项质量指标值
服从正态分布
,利用该正态分布,求
落在
内的概率;
②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于
内的包数为
,求
的分布列和数学期望.
附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为
;
②若
,则
,
.


(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数

(2)①由直方图可以认为,速冻水饺的该项质量指标值




②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于



附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为

②若



21.
为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班级进行教学实验,为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表:记成绩不低于70分者为“成绩优良”.
(1)由以上统计数据填写下面2×2列联表,并判断“成绩优良与教学方式是否有关”?
现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核.在这8人中,记成绩不优良的乙班人数为
,求
的分布列及数学期望.
附:
. 临界值表
分数 | [50,59) | [60,69) | [70,79) | [80,89) | [90,100] |
甲班频数 | 5 | 6 | 4 | 4 | 1 |
乙班频数 | 1 | 3 | 6 | 5 | 5 |
(1)由以上统计数据填写下面2×2列联表,并判断“成绩优良与教学方式是否有关”?
| 甲班 | 乙班 | 总计 |
成绩优良 | | | |
成绩不优良 | | | |
总计 | | | |
现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核.在这8人中,记成绩不优良的乙班人数为


附:



试卷分析
-
【1】题量占比
单选题:(12道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:21